Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hybrid metal–organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly

Abstract

Controlling inorganic structure and dimensionality through structure-directing agents is a versatile approach for new materials synthesis that has been used extensively for metal–organic frameworks and coordination polymers. However, the lack of ‘solid’ inorganic cores requires charge transport through single-atom chains and/or organic groups, limiting their electronic properties. Here, we report that strongly interacting diamondoid structure-directing agents guide the growth of hybrid metal–organic chalcogenide nanowires with solid inorganic cores having three-atom cross-sections, representing the smallest possible nanowires. The strong van der Waals attraction between diamondoids overcomes steric repulsion leading to a cis configuration at the active growth front, enabling face-on addition of precursors for nanowire elongation. These nanowires have band-like electronic properties, low effective carrier masses and three orders-of-magnitude conductivity modulation by hole doping. This discovery highlights a previously unexplored regime of structure-directing agents compared with traditional surfactant, block copolymer or metal–organic framework linkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of synthesis and structure of MOC crystals.
Figure 2: ‘Face-on’ growth mechanism of 1ADCu.
Figure 3: Relative stabilities of 1ADCu NWs with different diameters.
Figure 4: Prediction of growth mode and crystal structure of 4DICu.
Figure 5: Theoretical and experimental investigation of electronic properties.
Figure 6: SEM micrographs of MOC crystals beyond copper thiolates.

Similar content being viewed by others

References

  1. Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2 . Nat. Nanotech. 9, 111–115 (2014).

    Article  CAS  Google Scholar 

  2. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    Article  CAS  Google Scholar 

  3. Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3 . Nature 515, 245–248 (2014).

    Article  CAS  Google Scholar 

  4. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  Google Scholar 

  5. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  6. Leong, W. L. & Vittal, J. J. One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications. Chem. Rev. 111, 688–764 (2011).

    Article  CAS  Google Scholar 

  7. Simancas, R. et al. Modular organic structure-directing agents for the synthesis of zeolites. Science 330, 1219–1222 (2010).

    Article  CAS  Google Scholar 

  8. Chakrabarty, R., Mukherjee, P. S. & Stang, P. J. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011).

    Article  CAS  Google Scholar 

  9. Furukawa, H. et al. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  CAS  Google Scholar 

  10. Su, W. et al. Tunable polymerization of silver complexes with organosulfur ligand: counterions effect, solvent- and temperature-dependence in the formation of silver(I)-thiolate(and/or thione) complexes. Inorg. Chim. Acta 331, 8–15 (2002).

    Article  CAS  Google Scholar 

  11. Fan, H. Nanocrystal-micelle: synthesis, self-assembly and application. Chem. Commun. 1383–1394 (2008).

  12. Cui, H., Webber, M. J. & Stupp, S. I. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94, 1–18 (2010).

    Article  CAS  Google Scholar 

  13. Zhao, D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Ångstrom pores. Science 279, 548–552 (1998).

    Article  CAS  Google Scholar 

  14. Dahl, J. E., Liu, S. G. & Carlson, R. M. K. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299, 96–99 (2003).

    Article  CAS  Google Scholar 

  15. Schwertfeger, H., Fokin, A. A. & Schreiner, P. R. Diamonds are a chemist’s best friend: diamondoid chemistry beyond adamantane. Angew. Chem. Int. Ed. 47, 1022–1036 (2008).

    Article  CAS  Google Scholar 

  16. Gunawan, M. A. et al. Diamondoids: functionalization and subsequent applications of perfectly defined molecular cage hydrocarbons. New J. Chem. 38, 28–41 (2014).

    Article  CAS  Google Scholar 

  17. Schreiner, P. R. et al. Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces. Nature 477, 308–311 (2011).

    Article  CAS  Google Scholar 

  18. Fokin, A. A. et al. Stable alkanes containing very long carbon–carbon bonds. J. Am. Chem. Soc. 134, 13641–13650 (2012).

    Article  CAS  Google Scholar 

  19. Wagner, J. P. & Schreiner, P. R. London dispersion in molecular chemistry-reconsidering steric effects. Angew. Chem. Int. Ed. 54, 12274–12296 (2015).

    Article  CAS  Google Scholar 

  20. Nowacki, W. Die Krystallstruktur von Adamantan (symm. Tri-cyclo-decan). Helv. Chim. Acta 28, 1233–1242 (1945).

    Article  CAS  Google Scholar 

  21. Makowski, M., Czaplewski, C., Liwo, A. & Scheraga, H. A. Potential of mean force of association of large hydrophobic particles: toward the nanoscale limit. J. Phys. Chem. B 114, 993–1003 (2010).

    Article  CAS  Google Scholar 

  22. Wang, N., Tang, Z. K., Li, G. D. & Chen, J. S. Single-walled 4 Å carbon nanotube arrays. Nature 408, 50–51 (2000).

    Article  CAS  Google Scholar 

  23. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  24. Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).

    Article  CAS  Google Scholar 

  25. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 73005 (2009).

    Article  CAS  Google Scholar 

  26. Lozano, E., Nieuwenhuyzen, M. & James, S. L. Ring-opening polymerisation of silver–diphosphine [M2L3] coordination cages to give [M2L3] coordination polymers. Chem. Eur. J. 7, 2644–2651 (2001).

    Article  CAS  Google Scholar 

  27. Jiang, J.-J. et al. Structural disorder and transformation in crystal growth: direct observation of ring-opening isomerization in a metal–organic solid solution. IUCrJ 1, 318–327 (2014).

    Article  CAS  Google Scholar 

  28. Espinet, P., Lequerica, M. C. & Martín-Alvarez, J. M. Synthesis, structural characterization and mesogenic behavior of copper(I) n-alkylthiolates. Chem. Eur. J. 5, 1982–1986 (1999).

    Article  CAS  Google Scholar 

  29. Low, K.-H., Roy, V. A. L., Chui, S. S.-Y., Chan, S. L.-F. & Che, C.-M. Highly conducting two-dimensional copper(I) 4-hydroxythiophenolate network. Chem. Commun. 46, 7328–7330 (2010).

    Article  CAS  Google Scholar 

  30. Talin, A. A. et al. Tunable electrical conductivity in metal–organic framework thin-film devices. Science 343, 66–69 (2014).

    Article  CAS  Google Scholar 

  31. Yu, S., Xiong, H. D., Eshun, K., Yuan, H. & Li, Q. Phase transition, effective mass and carrier mobility of MoS2 monolayer under tensile strain. Appl. Surf. Sci. 325, 27–32 (2015).

    Article  CAS  Google Scholar 

  32. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).

    Article  CAS  Google Scholar 

  33. Raty, J.-Y., Galli, G., Bostedt, C., Van Buuren, T. W. & Terminello, L. J. Quantum confinement and fullerenelike surface reconstructions in nanodiamonds. Phys. Rev. Lett. 90, 37401 (2003).

    Article  CAS  Google Scholar 

  34. Richter, R. et al. Size and shape dependent photoluminescence and excited state decay rates of diamondoids. Phys. Chem. Chem. Phys. 16, 3070–3076 (2014).

    Article  CAS  Google Scholar 

  35. Sheberla, D. et al. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014).

    Article  CAS  Google Scholar 

  36. Huang, X. et al. A two-dimensional πd conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 6, 7408 (2015).

    Article  CAS  Google Scholar 

  37. Gimeno, M. C. & Gimeno, M. C. Handbook of Chalcogen Chemistry 33–80 (Royal Society of Chemistry, 2006).

    Google Scholar 

  38. Agarwal, R., Barrelet, C. J. & Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 5, 917–920 (2005).

    Article  CAS  Google Scholar 

  39. Lu, M.-Y. et al. ZnO − ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano 3, 357–362 (2009).

    Article  CAS  Google Scholar 

  40. Voit, J. One-dimensional Fermi liquids. Rep. Prog. Phys. 58, 977–1116 (1995).

    Article  CAS  Google Scholar 

  41. Yang, W. L. et al. Monochromatic electron photoemission from diamondoid monolayers. Science 316, 1460–1462 (2007).

    Article  CAS  Google Scholar 

  42. Clay, W. A. et al. Origin of the monochromatic photoemission peak in diamondoid monolayers. Nano Lett. 9, 57–61 (2009).

    Article  CAS  Google Scholar 

  43. Tkachenko, B. A. et al. Functionalized nanodiamonds part 3: thiolation of tertiary/bridgehead alcohols. Org. Lett. 8, 1767–1770 (2006).

    Article  CAS  Google Scholar 

  44. Hohman, J. N. et al. Dynamic double lattice of 1-adamantaneselenolate self-assembled monolayerse on Au{111}. J. Am. Chem. Soc. 133, 19422–19431 (2011).

    Article  CAS  Google Scholar 

  45. Skrabalak, S. E., Wiley, B. J., Kim, M., Formo, E. V. & Xia, Y. On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Lett. 8, 2077–2081 (2008).

    Article  CAS  Google Scholar 

  46. Stange, A. F., Klein, A., Klinkhammer, K.-W. & Kaim, W. Aggregation control of copper(I) thiolates through substituent size and ancillary chelate ligands: closely related mono-, di-, tri- and tetranuclear complexes. Inorg. Chim. Acta 324, 336–341 (2001).

    Article  CAS  Google Scholar 

  47. Eichhöfer, A. et al. Homoleptic 1-D iron selenolate complexes—synthesis, structure, magnetic and thermal behaviour of 1[Fe(SeR)2] (R = Ph, Mes). Dalt. Trans. 40, 7022–7032 (2011).

    Article  CAS  Google Scholar 

  48. MacDiarmid, A. G. et al. The concept of ‘doping’ of conducting polymers: the role of reduction potentials [and discussion]. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 314, 3–15 (1985).

    Article  Google Scholar 

  49. Bruker, SAINT and SADABS (Bruker AXS, 2007).

  50. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  51. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article  CAS  Google Scholar 

  52. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  53. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  54. McPhillips, T. M. et al. Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. J. Synchrotron Radiat. 9, 401–406 (2002).

    Article  CAS  Google Scholar 

  55. Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004).

    Article  CAS  Google Scholar 

  56. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  57. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  58. Okubo, T. et al. Crystal structure and carrier transport properties of a new semiconducting 2D coordination polymer with a 3,5-dimethylpiperidine dithiocarbamate ligand. Chem. Commun. 49, 4316–4318 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Soltis and I. Mathews at SLAC National Accelerator Laboratory and S. Teat at Lawrence Berkeley National Laboratory for assistance with SC-XRD, and Y. Liang at Lawrence Berkeley National Laboratory for help with DFT computations. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF). This work was supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under contract DE-AC02-76SF00515. The work done at the Justus-Liebig University was further supported by the Deutsche Forschungsgemeinschaft, Priority Program ‘Dispersion’ (SPP 1807, Schr 597/27-1). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the US Department of Energy Office of Science by Stanford University. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH. This research used resources of the National Energy Research Scientific Computing Center (NERSC) and Advanced Light Source (ALS), both of which are DOE Office of Science User Facilities supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

H.Y., J.N.H., Z.-X.S., P.R.S. and N.A.M. conceived the idea. H.Y., J.N.H., F.H.L., B.W. and T.R.K. performed the growth experiments and the physical measurements. H.Y., F.H.L., C.J. and T.P.D. performed the DFT computations. D.S.-I. and A.V. solved the crystal structures from SC-XRD data. J.E.P.D., R.M.K.C., B.A.T., A.A.F. and P.R.S. provided the diamondoids and synthesized their derivatives. H.Y., J.N.H. and N.A.M. wrote the paper. All authors contributed to the discussion and revision of the paper.

Corresponding author

Correspondence to Nicholas A. Melosh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 989 kb)

Supplementary Information

Crystallographic data for 1ADCu (CIF 258 kb)

Supplementary Information

Crystallographic data for 4DICu (CIF 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Hohman, J., Li, F. et al. Hybrid metal–organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly. Nature Mater 16, 349–355 (2017). https://doi.org/10.1038/nmat4823

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4823

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing