Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Centimetre-scale micropore alignment in oriented polycrystalline metal–organic framework films via heteroepitaxial growth

Abstract

The fabrication of oriented, crystalline films of metal–organic frameworks (MOFs) is a critical step toward their application to advanced technologies such as optics, microelectronics, microfluidics and sensing. However, the direct synthesis of MOF films with controlled crystalline orientation remains a significant challenge. Here we report a one-step approach, carried out under mild conditions, that exploits heteroepitaxial growth for the rapid fabrication of oriented polycrystalline MOF films on the centimetre scale. Our methodology employs crystalline copper hydroxide as a substrate and yields MOF films with oriented pore channels on scales that primarily depend on the dimensions of the substrate. To demonstrate that an anisotropic crystalline morphology can translate to a functional property, we assembled a centimetre-scale MOF film in the presence of a dye and showed that the optical response could be switched ‘ON’ or ‘OFF’ by simply rotating the film.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Approach to fully oriented MOF growth.
Figure 2: Heteroepitaxially grown Cu2(BDC)2 on vertically oriented Cu(OH)2 nanotubes.
Figure 3: Micrographs and X-ray diffraction patterns of the macroscopically oriented MOF films.
Figure 4: Switching of fluorescence of dye, DMASP, by a polarization of an incident light.

Similar content being viewed by others

References

  1. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Google Scholar 

  2. Kitagawa, S., Kitamura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  3. Jiang, H. C. et al. Pore surface engineering with controlled loading of functional groups via click chemistry in highly stable metal-organic frameworks. J. Am. Chem. Soc. 134, 14690–14693 (2012).

    Article  CAS  Google Scholar 

  4. Deng, H. et al. Multiple functional groups of varying rations in metal-organic frameworks. Science 327, 846–850 (2010).

    Article  CAS  Google Scholar 

  5. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 18, 469–472 (2002).

    Article  Google Scholar 

  6. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  7. Lee, L. Y. et al. Metal-organic framework materials as catalysts. Chem. Soc. Rev 38, 1450–1459 (2009).

    Article  CAS  Google Scholar 

  8. Horcajada, P. et al. Metal-organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012).

    Article  CAS  Google Scholar 

  9. Kreno, L. E. et al. Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    CAS  Google Scholar 

  10. Mondloch, J. E. et al. Destruction of chemical warfare agents using metal-organic frameworks. Nat. Mater. 14, 512–516 (2015).

    Article  CAS  Google Scholar 

  11. Wang, C., Zhang, T. & Lin, W. Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics. Chem. Rev. 112, 1084–1104 (2012).

    Article  CAS  Google Scholar 

  12. Cui, Y., Yue, Y., Qian, G. & Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 112, 1126–1162 (2012).

    Article  CAS  Google Scholar 

  13. Mahato, P. et al. Fast and long-range triplet exciton diffusion in metal–organic frameworks for photon upconversion at ultralow excitation power. Nat. Mater. 14, 924–930 (2015).

    Article  CAS  Google Scholar 

  14. Li, J.-R., Sculley, J. & Zhou, H.-C. Metal-organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    Article  CAS  Google Scholar 

  15. Miyata, H. et al. Silica films with a single-crystalline mesoporous structure. Nat. Mater. 3, 651–656 (2004).

    Article  CAS  Google Scholar 

  16. Zhang, H. et al. Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 4, 787–793 (2005).

    Article  CAS  Google Scholar 

  17. Allendorf, M. D., Schwartzberg, A., Stavila, V. & Talin, A. A. A roadmap to implementing metal–organic frameworks in electronic devices: challenges and critical directions. Chem. Eur. J. 17, 11372–11388 (2011).

    Article  CAS  Google Scholar 

  18. Inagaki, S., Guan, S., Ohsuna, T. & Terasaki, O. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature 416, 304–307 (2002).

    Article  CAS  Google Scholar 

  19. Carretero-Genevrier, A. et al. Soft-chemistry-based routes to epitaxial α-quartz thin films with tunable textures. Science 340, 827–831 (2013).

    Article  CAS  Google Scholar 

  20. Chen, Z. et al. DNA translocation through an array of kinked nanopores. Nat. Mater. 9, 667–675 (2010).

    Article  CAS  Google Scholar 

  21. Richman, E. K., Brezasinski, T. & Tolbert, S. H. Vertically oriented hexagonal mesoporous films formed through nanometre-scale epitaxy. Nat. Mater. 7, 712–717 (2008).

    Article  CAS  Google Scholar 

  22. Yamagiwa, H. et al. Detection of volatile organic compounds by weight-detectable sensors coated with metal-organic frameworks. Sci. Rep. 4, 6247 (2014).

    Article  CAS  Google Scholar 

  23. Venkatesan, B. M. & Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotech. 6, 615–624 (2011).

    Article  CAS  Google Scholar 

  24. Phang, W. J. et al. Superprotonic conductivity of a Uio-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew. Chem. Int. Ed. 54, 5142–5146 (2015).

    Article  CAS  Google Scholar 

  25. Sun, L. et al. Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

    Article  CAS  Google Scholar 

  26. Zacher, D., Shekhah, O., Wöll, C. & Fischer, R. A. Thin films of metal-organic frameworks. Chem. Soc. Rev 38, 1418–1429 (2009).

    Article  CAS  Google Scholar 

  27. Falcaro, P. et al. MOF positioning technology and device fabrication. Chem. Soc. Rev. 43, 5513–5560 (2014).

    Article  CAS  Google Scholar 

  28. Biemmi, E., Scherb, C. & Bein, T. Oriented growth of the metal organic framework Cu3(BTC)2(H2O)3 xH2O tunable with functionalized self-assembled monolayers. J. Am. Chem. Soc. 129, 8054–8055 (2007).

    Article  CAS  Google Scholar 

  29. Li, S. et al. Unconventional nucleation and oriented growth of ZIF-8 crystals on non-polar surface. Adv. Mater. 24, 5954–5958 (2012).

    Article  CAS  Google Scholar 

  30. Arslan, H. K. et al. Intercalation in layered metal-organic frameworks: reversible inclusion of an extended π-system. J. Am. Chem. Soc. 133, 8158–8161 (2011).

    Article  CAS  Google Scholar 

  31. Liu, J. et al. A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy. Sci. Rep. 2, 921 (2012).

    Article  Google Scholar 

  32. So, M. C. et al. Layer-by-layer fabrication of oriented porous thin films based on porphyrin-containing metal–organic frameworks. J. Am. Chem. Soc. 135, 15698–15701 (2013).

    Article  CAS  Google Scholar 

  33. Makiura, R., Motoyama, S., Umemura, Y., Sakata, O. & Kitagawa, H. Surface nano-architecture of a metal–organic framework. Nat. Mater. 9, 565–571 (2010).

    Article  CAS  Google Scholar 

  34. Zhuang, J. L., Terfort, A. & Wöll, C. Formation of oriented and patterned films of metal–organic frameworks by liquid phase epitaxy: a review. Coord. Chem. Rev. 307, 391–424 (2016).

    Article  CAS  Google Scholar 

  35. Shekhah, O. et al. Controlling interpenetration in metal–organic frameworks by liquid-phase epitaxy. Nat. Mater. 8, 481–484 (2009).

    Article  CAS  Google Scholar 

  36. Otsubo, K. et al. Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal–organic framework thin film confirmed by synchrotron x-ray diffraction. J. Am. Chem. Soc. 134, 9605–9608 (2012).

    Article  CAS  Google Scholar 

  37. Liu, B. et al. Enantiopure metal-organic framework thin films: oriented SURMOF growth and enantioselective adsorption. Angew. Chem. Int. Ed. 51, 807–810 (2012).

    Article  CAS  Google Scholar 

  38. Furukawa, S. et al. Heterogeneously hybridized porous coordination polymer crystals: fabrication of heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship. Angew. Chem. Int. Ed. 48, 1766–1770 (2009).

    Article  CAS  Google Scholar 

  39. Wannapaiboon, S., Tu, M. & Fischer, R. A. Liquid phase heteroepitaxial growth of moisture-tolerant MOF-5 isotype thin films and assessment of the sorption properties by quartz crystal microbalance. Adv. Funct. Mater. 24, 2696–2705 (2014).

    Article  CAS  Google Scholar 

  40. Seo, S.-D. et al. Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes. Nanoscale Res. Lett. 6, 397 (2011).

    Article  Google Scholar 

  41. Okada, K. et al. Copper conversion into Cu(OH)2 nanotubes for positioning Cu3(BTC)2 MOF crystals: controlling the growth on flat plates, 3D architectures, and as patterns. Adv. Funct. Mater. 24, 1969–1977 (2014).

    Article  CAS  Google Scholar 

  42. Oswald, R. H., Reller, A., Schmalle, H. W. & Dubler, E. Structure of copper(II) hydroxide, Cu(OH)2 . Acta Cryst. C46, 2279–2284 (1990).

    CAS  Google Scholar 

  43. Chen, Y. & Washburn, J. Structural transition in large-lattice-mismatch heteroepitaxy. Phys. Rev. Lett. 77, 4046–4049 (1996).

    Article  CAS  Google Scholar 

  44. Dix, J. A. & Verkman, A. S. Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity. Biophys. J. 57, 231–240 (1990).

    Article  CAS  Google Scholar 

  45. Vrabioiu, A. M. & Mitchison, T. J. Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature 443, 466–469 (2006).

    Article  CAS  Google Scholar 

  46. Timr, S. et al. Nonlinear optical properties of fluorescent dyes allow for accurate determination of their molecular orientations in phospholipid membranes. J. Phys. Chem. B 119, 9706–9716 (2015).

    Article  CAS  Google Scholar 

  47. Bloch, W. M., Champness, N. R. & Doonan, C. J. X-ray crystallography in open framework materials. Angew. Chem. Int. Ed. 54, 2–10 (2015).

    Article  Google Scholar 

  48. Talin, A. A. et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343, 66–69 (2014).

    Article  CAS  Google Scholar 

  49. Distefano, G. et al. Highly ordered alignment of a vinyl polymer by host–guest cross-polymerization. Nat. Chem. 5, 335–341 (2013).

    Article  CAS  Google Scholar 

  50. Ikezoe, Y. et al. Autonomous motors of a metal-organic framework powered by reorganization of self-assembled peptides at interfaces. Nat. Mater. 11, 1081–1085 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research (B) (26288108), a Grant-in-Aid for Scientific Research on Innovative Area (26630322) from the Ministry of Education, Culture Sports, Science and Technology of Japan, and the Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation from Japan Society of Promotion of Science. K.O. acknowledges JSPS Research Fellowship for Young Scientists. We acknowledge the use of facilities within the Monash Centre for Electron Microscopy. This research used equipment funded by the Australian Research Council grant LE110100223. P.F. acknowledges the Australian Research Council (DE120102451) and the ASTE JSPS schemes (Australia Japan Emerging Research Leaders Exchange and Invitation Fellowship programs). T.D.C. is acknowledged for helpful discussions. C.D. would like to acknowledge the JSPS for the visiting professorial fellowship. R. Makiura is acknowledged for helpful discussion and reference sample preparations.

Author information

Authors and Affiliations

Authors

Contributions

P.F. and M.T. conceived, designed and supervised the project with the help of A.H. and C.D.; K.O., T.H., K.I. and Y.T. performed the sample preparations, experiments and analysed the data; T.W., P.F. and M.T. performed TEM observations and analysed the results; A.W.T. performed the computational study of molecular simulations; P.F., K.O., C.D. and M.T. co-wrote the paper.

Corresponding authors

Correspondence to Paolo Falcaro or Masahide Takahashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3522 kb)

Supplementary Information

Supplementary movie 1 (MOV 26099 kb)

Supplementary Information

Supplementary movie 2 (MOV 8984 kb)

Supplementary Information

Supplementary movie 3 (MOV 9328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falcaro, P., Okada, K., Hara, T. et al. Centimetre-scale micropore alignment in oriented polycrystalline metal–organic framework films via heteroepitaxial growth. Nature Mater 16, 342–348 (2017). https://doi.org/10.1038/nmat4815

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4815

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing