Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Valley photonic crystals for control of spin and topology

Abstract

Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing1,2,3,4. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points5,6,7,8,9,10. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials11,12,13,14,15. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley–spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VPC and valley-dependent spin-split bands.
Figure 2: PVHE in VPC.
Figure 3: Valley-dependent polarization and selective net spin flow.
Figure 4: Independent control of valley and topology in a photonic crystal with the bianisotropy–nonbianisotropy configuration.

Similar content being viewed by others

References

  1. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  CAS  Google Scholar 

  2. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  CAS  Google Scholar 

  3. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997).

    Article  CAS  Google Scholar 

  4. Huang, X., Lai, Y., Hang, Z. H., Zheng, H. H. & Chan, C. T. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011).

    Article  CAS  Google Scholar 

  5. Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  CAS  Google Scholar 

  6. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article  CAS  Google Scholar 

  7. Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    Article  CAS  Google Scholar 

  8. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Article  CAS  Google Scholar 

  9. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  CAS  Google Scholar 

  10. Lu, L., Fu, L., Joannopoulos, J. D. & Soljačić, M. Weyl points and line nodes in gyroid photonic crystals. Nat. Photon. 7, 294–299 (2013).

    Article  CAS  Google Scholar 

  11. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  Google Scholar 

  12. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  13. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  CAS  Google Scholar 

  14. Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

    Article  CAS  Google Scholar 

  15. Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733–737 (2015).

    Article  CAS  Google Scholar 

  16. Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).

    Article  CAS  Google Scholar 

  17. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  CAS  Google Scholar 

  18. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  CAS  Google Scholar 

  19. Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013).

    Article  Google Scholar 

  20. Yin, X., Ye, Z., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).

    Article  CAS  Google Scholar 

  21. High, A. A. et al. Visible-frequency hyperbolic metasurface. Nature 552, 192–196 (2015).

    Article  Google Scholar 

  22. Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015).

    Article  CAS  Google Scholar 

  23. Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013).

    Article  CAS  Google Scholar 

  24. Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin–orbit interaction of light. Science 346, 67–71 (2014).

    Article  CAS  Google Scholar 

  25. Young, A. B. et al. Polarization engineering in photonic crystal waveguides for spin-photon entanglers. Phys. Rev. Lett. 115, 153901 (2015).

    Article  CAS  Google Scholar 

  26. Söllner, I. et al. Deterministic photon-emitter coupling in chiral photonic circuits. Nat. Nano. 10, 775–778 (2015).

    Article  Google Scholar 

  27. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    Article  CAS  Google Scholar 

  28. Chen, W. J. et al. Experimental realization of photonic topological insulator in a uniaxial crystal waveguide. Nat. Commun. 5, 5782 (2014).

    Article  CAS  Google Scholar 

  29. Chen, X. D., Deng, Z. L., Chen, W. J., Wang, J. R. & Dong, J. W. Manipulating pseudospin-polarized state of light in dispersion-immune photonic topological metacrystals. Phys. Rev. B 92, 014210 (2015).

    Article  Google Scholar 

  30. Ma, T. & Shvets, G. All-Si valley-Hall photonic topological insulator. New J. Phys. 18, 025012 (2016).

    Article  Google Scholar 

  31. Gao, W. et al. Topological photonic phase in chiral hyperbolic metamaterials. Phys. Rev. Lett. 114, 037402 (2015).

    Article  Google Scholar 

  32. Xiao, M., Chen, W.-J., He, W-Y. & Chan, C. T. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920–924 (2015).

    Article  CAS  Google Scholar 

  33. Qiao, Z., Tse, W.-K., Jiang, H., Yao, Y. & Niu, Q. Two-dimensional topological insulator state and topological phase transition in bilayer graphene. Phys. Rev. Lett. 107, 256801 (2011).

    Article  Google Scholar 

  34. Lensky, Y. D., Song, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological valley currents in gapped Dirac materials. Phys. Rev. Lett. 114, 256601 (2015).

    Article  Google Scholar 

  35. Tahir, M. & Schwingenschlögl, U. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene. Sci. Rep. 3, 1075 (2013).

    Article  CAS  Google Scholar 

  36. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th edn (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

Download references

Acknowledgements

This work was primarily funded by the ‘Light-Material Interactions in Energy Conversion’ Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-AC02-05CH11231; the analysis of the bianisotropy–nonbianisotropy configuration is supported by the Office of Naval Research (ONR) MURI programme under Grant No. N00014-13-1-0678. J.-W.D. acknowledges support from the Natural Science Foundation of China (11522437, 11274396), the Guangdong Natural Science Funds for Distinguished Young Scholar (S2013050015694), Guangdong special support program, and the SYSU visiting grant.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and J.-W.D. conceived the project. J.-W.D. and X.-D.C. developed and completed the idea. J.-W.D., X.-D.C., H.Z. and Y.W. analysed the data. All authors contributed to discussions and manuscript writing.

Corresponding author

Correspondence to Xiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1436 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, JW., Chen, XD., Zhu, H. et al. Valley photonic crystals for control of spin and topology. Nature Mater 16, 298–302 (2017). https://doi.org/10.1038/nmat4807

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4807

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing