Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A charge density wave-like instability in a doped spin–orbit-assisted weak Mott insulator

Abstract

Layered perovskite iridates realize a rare class of Mott insulators that are predicted to be strongly spin–orbit coupled analogues of the parent state of cuprate high-temperature superconductors1,2. Recent discoveries of pseudogap3,4,5, magnetic multipolar ordered6 and possible d-wave superconducting phases7,8 in doped Sr2IrO4 have reinforced this analogy among the single layer variants. However, unlike the bilayer cuprates9, no electronic instabilities have been reported in the doped bilayer iridate Sr3Ir2O7. Here we show that Sr3Ir2O7 realizes a weak Mott state with no cuprate analogue9 by using ultrafast time-resolved optical reflectivity to uncover an intimate connection between its insulating gap and antiferromagnetism. However, we detect a subtle charge density wave-like Fermi surface instability in metallic electron doped Sr3Ir2O7 at temperatures (TDW) close to 200 K via the coherent oscillations of its collective modes, which is reminiscent of that observed in cuprates10,11. The absence of any signatures of a new spatial periodicity below TDW from diffraction12, scanning tunnelling12 and photoemission13,14 based probes suggests an unconventional and possibly short-ranged nature of this density wave order.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature-dependent reflectivity transients of Sr3Ir2O7 (x = 0).
Figure 2: Doping-dependent reflectivity transients of (Sr1−xLax)3Ir2O7.
Figure 3: Coherent oscillations of an electronic order parameter.
Figure 4: Reflectivity transients of insulating (Sr1−xCax)3Ir2O7.

Similar content being viewed by others

References

  1. Kim, B. J. et al. Novel Jeff = 1/2 Mott state induced by relativistic spin–orbit coupling in Sr2IrO4 . Phys. Rev. Lett. 101, 076402 (2008).

    Article  CAS  Google Scholar 

  2. Wang, F. & Senthil, T. Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity. Phys. Rev. Lett. 106, 136402 (2011).

    Article  Google Scholar 

  3. Kim, Y. K. et al. Fermi arcs in a doped pseudospin-1/2 Heisenberg antiferromagnet. Science 345, 187–190 (2014).

    Article  CAS  Google Scholar 

  4. de la Torre, A. et al. Collapse of the Mott gap and emergence of a nodal liquid in lightly doped Sr2IrO4 . Phys. Rev. Lett. 115, 176402 (2015).

    Article  CAS  Google Scholar 

  5. Cao, Y. et al. Hallmarks of the Mott-metal crossover in the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4 . Nat. Commun. 7, 11367 (2016).

    Article  CAS  Google Scholar 

  6. Zhao, L. et al. Evidence of an odd-parity hidden order in a spin–orbit coupled correlated iridate. Nat. Phys. 12, 32–36 (2016).

    Article  CAS  Google Scholar 

  7. Kim, Y. K., Sung, N. H., Denlinger, J. D. & Kim, B. J. Observation of a d-wave gap in electron-doped Sr2IrO4 . Nat. Phys. 12, 37–41 (2016).

    Article  CAS  Google Scholar 

  8. Yan, Y. J. et al. Electron-doped Sr2IrO4: an analogue of hole-doped cuprate superconductors demonstrated by scanning tunneling microscopy. Phys. Rev. X 5, 41018 (2015).

    Google Scholar 

  9. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  CAS  Google Scholar 

  10. Torchinsky, D. H., Mahmood, F., Bollinger, A. T., Božović, I. & Gedik, N. Fluctuating charge-density waves in a cuprate superconductor. Nat. Mater. 12, 387–391 (2013).

    Article  CAS  Google Scholar 

  11. Hinton, J. P. et al. New collective mode in YBa2Cu3O6+x observed by time-domain reflectometry. Phys. Rev. B 88, 060508 (2013).

    Article  Google Scholar 

  12. Hogan, T. et al. First-order melting of a weak spin–orbit Mott insulator into a correlated metal. Phys. Rev. Lett. 114, 257203 (2015).

    Article  Google Scholar 

  13. de la Torre, A. et al. Coherent quasiparticles with a small Fermi surface in lightly doped Sr3Ir2O7 . Phys. Rev. Lett. 113, 256402 (2014).

    Article  CAS  Google Scholar 

  14. He, J. et al. Spectroscopic evidence for negative electronic compressibility in a quasi-three-dimensional spin–orbit correlated metal. Nat. Mater. 14, 577–582 (2015).

    Article  CAS  Google Scholar 

  15. Park, H. J. et al. Phonon-assisted optical excitation in the narrow bandgap Mott insulator Sr3Ir2O7 . Phys. Rev. B 89, 155115 (2014).

    Article  Google Scholar 

  16. Okada, Y. et al. Imaging the evolution of metallic states in a correlated iridate. Nat. Mater. 12, 707–713 (2013).

    Article  CAS  Google Scholar 

  17. Wang, Q. et al. Dimensionality-controlled Mott transition and correlation effects in single-layer and bilayer perovskite iridates. Phys. Rev. B 87, 245109 (2013).

    Article  Google Scholar 

  18. Fujiyama, S. et al. Weak antiferromagnetism of Jeff = 1/2 band in bilayer iridate Sr3Ir2O7 . Phys. Rev. B 86, 174414 (2012).

    Article  Google Scholar 

  19. King, P. D. C. et al. Spectroscopic indications of polaronic behavior of the strong spin–orbit insulator Sr3Ir2O7 . Phys. Rev. B 87, 241106 (2013).

    Article  Google Scholar 

  20. Kim, J. et al. Large spin-wave energy gap in the bilayer iridate Sr3Ir2O7: evidence for enhanced dipolar interactions near the Mott metal-insulator transition. Phys. Rev. Lett. 109, 157402 (2012).

    Article  Google Scholar 

  21. Moretti Sala, M. et al. Evidence of quantum dimer excitations in Sr3Ir2O7 . Phys. Rev. B 92, 024405 (2015).

    Article  Google Scholar 

  22. Chia, E. E. M. et al. Quasiparticle relaxation across the spin-density-wave gap in the itinerant antiferromagnet UNiGa5 . Phys. Rev. B 74, 140409 (2006).

    Article  Google Scholar 

  23. Torchinsky, D. H., Chen, G. F., Luo, J. L., Wang, N. L. & Gedik, N. Band-dependent quasiparticle dynamics in single crystals of the Ba0.6K0.4Fe2As2 superconductor revealed by pump-probe spectroscopy. Phys. Rev. Lett. 105, 027005 (2010).

    Article  Google Scholar 

  24. Rothwarf, A. & Taylor, B. N. Measurement of recombination lifetimes in superconductors. Phys. Rev. Lett. 19, 27–30 (1967).

    Article  CAS  Google Scholar 

  25. Kabanov, V. V., Demsar, J., Podobnik, B. & Mihailovic, D. Quasiparticle relaxation dynamics in superconductors with different gap structures: theory and experiments on YBa2Cu3O7−δ . Phys. Rev. B 59, 1497–1506 (1999).

    Article  CAS  Google Scholar 

  26. Li, L. et al. Tuning the Jeff = 1/2 insulating state via electron doping and pressure in the double-layered iridate Sr3Ir2O7 . Phys. Rev. B 87, 235127 (2013).

    Article  Google Scholar 

  27. Wall, S. et al. Tracking the evolution of electronic and structural properties of VO2 during the ultrafast photoinduced insulator–metal transition. Phys. Rev. B 87, 115126 (2013).

    Article  Google Scholar 

  28. Gretarsson, H. et al. Two-magnon Raman scattering and pseudospin-lattice interactions in Sr2IrO4 and Sr3Ir2O7 . Phys. Rev. Lett. 116, 136401 (2016).

    Article  CAS  Google Scholar 

  29. Demsar, J., Biljaković, K. & Mihailovic, D. Single particle and collective excitations in the one-dimensional charge density wave solid K0.3MoO3 probed in real time by femtosecond spectroscopy. Phys. Rev. Lett. 83, 800–803 (1999).

    Article  CAS  Google Scholar 

  30. Hogan, T. et al. Disordered dimer state in electron-doped Sr3Ir2O7 . Phys. Rev. B 94, 100401(R) (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank V. Madhavan and Z. Wang for providing scanning tunnelling microscopy data and analysis on (Sr1−xLax)3Ir2O7 samples and for helpful discussions. This work is supported by a GIST-Caltech Collaboration Grant and by ARO Grant W911NF-13-1-0059. Instrumentation was partially supported by ARO DURIP Award W911NF-13-1-0293. D.H. acknowledges funding provided by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (PHY-1125565) with support of the Gordon and Betty Moore Foundation through Grant GBMF1250. S.D.W. acknowledges support under NSF award No. DMR-1505549 as well as partial support from the MRSEC Program of the National Science Foundation under Award No. DMR 1121053 (T.H.).

Author information

Authors and Affiliations

Authors

Contributions

H.C., L.Z. and D.H. planned the experiment. H.C. performed the measurements. H.C., A.d.l.T., D.H. and L.Z. analysed the data. T.H. and S.D.W. prepared and characterized the samples and performed RIXS measurements. H.C. and D.H. wrote the manuscript.

Corresponding author

Correspondence to D. Hsieh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, H., Zhao, L., de la Torre, A. et al. A charge density wave-like instability in a doped spin–orbit-assisted weak Mott insulator. Nature Mater 16, 200–203 (2017). https://doi.org/10.1038/nmat4836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing