Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resolving ultrafast exciton migration in organic solids at the nanoscale

Abstract

Effectiveness of molecular-based light harvesting relies on transport of excitons to charge-transfer sites. Measuring exciton migration, however, has been challenging because of the mismatch between nanoscale migration lengths and the diffraction limit. Instead of using bulk substrate quenching methods, here we define quenching boundaries all-optically with sub-diffraction resolution, thus characterizing spatiotemporal exciton migration on its native nanometre and picosecond scales. By transforming stimulated emission depletion microscopy into a time-resolved ultrafast approach, we measure a 16-nm migration length in poly(2,5-di(hexyloxy)cyanoterephthalylidene) conjugated polymer films. Combined with Monte Carlo exciton hopping simulations, we show that migration in these films is essentially diffusive because intrinsic chromophore energetic disorder is comparable to chromophore inhomogeneous broadening. Our approach will enable previously unattainable correlation of local material structure to exciton migration character, applicable not only to photovoltaic or display-destined organic semiconductors but also to explaining the quintessential exciton migration exhibited in photosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRUSTED implementation.
Figure 2: Using TRUSTED to capture the fraction of remaining excitations versus time to obtain Ld.
Figure 3: Mapping the site distinguishability—downhill bias phase space to reveal the character of exciton migration.

Similar content being viewed by others

References

  1. Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nat. Mater. 5, 683–696 (2006).

    Article  CAS  Google Scholar 

  2. Brédas, J.-L., Beljonne, D., Coropceanu, V. & Cornil, J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 104, 4971–5004 (2004).

    Article  Google Scholar 

  3. Scheblykin, I. G., Yartsev, A., Pullerits, T., Gulbinas, V. & Sundström, V. Excited state and charge photogeneration dynamics in conjugated polymers. J. Phys. Chem. B 111, 6303–6321 (2007).

    Article  CAS  Google Scholar 

  4. Menke, S. M. & Holmes, R. J. Exciton diffusion in organic photovoltaic cells. Energy Environ. Sci. 7, 499–512 (2014).

    Article  CAS  Google Scholar 

  5. Köhler, A. & Bässler, H. Electronic Processes in Organic Semiconductors: An Introduction (John Wiley, 2015).

    Book  Google Scholar 

  6. Crooker, S. A., Hollingsworth, J. A., Tretiak, S. & Klimov, V. I. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials. Phys. Rev. Lett. 89, 186802 (2002).

    Article  CAS  Google Scholar 

  7. Broess, K. et al. Excitation energy transfer and charge separation in photosystem II membranes revisited. Biophys. J. 91, 3776–3786 (2006).

    Article  CAS  Google Scholar 

  8. Bennett, D. I. G., Amarnath, K. & Fleming, G. R. A structure-based model of energy transfer reveals the principles of light harvesting in photosystem II supercomplexes. J. Am. Chem. Soc. 135, 9164–9173 (2013).

    Article  CAS  Google Scholar 

  9. Jailaubekov, A. E. et al. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nat. Mater. 12, 66–73 (2013).

    Article  CAS  Google Scholar 

  10. Mikhnenko, O. V., Blom, P. W. M. & Nguyen, T.-Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 8, 1867–1888 (2015).

    Article  Google Scholar 

  11. Lin, J. D. A. et al. Systematic study of exciton diffusion length in organic semiconductors by six experimental methods. Mater. Horiz. 1, 280–285 (2014).

    Article  CAS  Google Scholar 

  12. Kozlov, O. V. et al. Real-time tracking of singlet exciton diffusion in organic semiconductors. Phys. Rev. Lett. 116, 057402 (2016).

    Article  Google Scholar 

  13. Gaab, K. M. & Bardeen, C. J. Anomalous exciton diffusion in the conjugated polymer MEH-PPV measured using a three-pulse pump–dump–probe anisotropy experiment. J. Phys. Chem. A 108, 10801–10806 (2004).

    Article  CAS  Google Scholar 

  14. Markov, D. E., Amsterdam, E., Blom, P. W. M., Sieval, A. B. & Hummelen, J. C. Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. J. Phys. Chem. A 109, 5266–5274 (2005).

    Article  CAS  Google Scholar 

  15. Lunt, R. R., Giebink, N. C., Belak, A. A., Benziger, J. B. & Forrest, S. R. Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. J. Appl. Phys. 105, 053711 (2009).

    Article  Google Scholar 

  16. Groves, C., Reid, O. G. & Ginger, D. S. Heterogeneity in polymer solar cells: local morphology and performance in organic photovoltaics studied with scanning probe microscopy. Acc. Chem. Res. 43, 612–620 (2010).

    Article  CAS  Google Scholar 

  17. Clark, J., Silva, C., Friend, R. H. & Spano, F. C. Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Phys. Rev. Lett. 98, 206406 (2007).

    Article  Google Scholar 

  18. Noriega, R. et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).

    Article  CAS  Google Scholar 

  19. Liu, Y. et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).

    Article  CAS  Google Scholar 

  20. Nguyen, T.-Q., Martini, I. B., Liu, J. & Schwartz, B. J. Controlling interchain interactions in conjugated polymers: the effects of chain morphology on exciton–exciton annihilation and aggregation in MEH–PPV films. J. Phys. Chem. B 104, 237–255 (2000).

    Article  CAS  Google Scholar 

  21. Wong, C. T. O., Lo, S. S. & Huang, L. Ultrafast spatial imaging of charge dynamics in heterogeneous polymer blends. J. Phys. Chem. Lett. 3, 879–884 (2012).

    Article  CAS  Google Scholar 

  22. Scully, S. R. & McGehee, M. D. Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors. J. Appl. Phys. 100, 034907 (2006).

    Article  Google Scholar 

  23. Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5, 3646 (2014).

    Article  CAS  Google Scholar 

  24. Akselrod, G. M. et al. Subdiffusive exciton transport in quantum dot solids. Nano Lett. 14, 3556–3562 (2014).

    Article  CAS  Google Scholar 

  25. Penwell, S. B., Ginsberg, L. D. S. & Ginsberg, N. S. Bringing far-field subdiffraction optical imaging to electronically coupled optoelectronic molecular materials using their endogenous chromophores. J. Phys. Chem. Lett. 6, 2767–2772 (2015).

    Article  CAS  Google Scholar 

  26. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  Google Scholar 

  27. Samuel, I. D. W., Rumbles, G. & Collison, C. J. Efficient interchain photoluminescence in a high-electron-affinity conjugated polymer. Phys. Rev. B 52, R11573–R11576 (1995).

    Article  CAS  Google Scholar 

  28. Buttafava, M., Boso, G., Ruggeri, A., Mora, A. D. & Tosi, A. Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate. Rev. Sci. Instrum. 85, 083114 (2014).

    Article  Google Scholar 

  29. Vicidomini, G. et al. Sharper low-power STED nanoscopy by time gating. Nat. Methods 8, 571–573 (2011).

    Article  CAS  Google Scholar 

  30. Lee, E. M. Y., Tisdale, W. A. & Willard, A. P. Can disorder enhance incoherent exciton diffusion? J. Phys. Chem. B 119, 9501–9509 (2015).

    Article  CAS  Google Scholar 

  31. Makhov, D. V. & Barford, W. Local exciton ground states in disordered polymers. Phys. Rev. B 81, 165201 (2010).

    Article  Google Scholar 

  32. Roberts, S. T. Energy transport: singlet to triplet and back again. Nat. Chem. 7, 764–765 (2015).

    Article  CAS  Google Scholar 

  33. Harrison, N. T. et al. Site-selective fluorescence studies of poly(p-phenylene vinylene) and its derivatives. Phys. Rev. B 53, 15815–15822 (1996).

    Article  CAS  Google Scholar 

  34. Hartenstein, B. & Bässler, H. Transport energy for hopping in a Gaussian density of states distribution. J. Non-Cryst. Solids 190, 112–116 (1995).

    Article  CAS  Google Scholar 

  35. Lewis, A. J. et al. Singlet exciton diffusion in MEH-PPV films studied by exciton–exciton annihilation. Org. Electron. 7, 452–456 (2006).

    Article  CAS  Google Scholar 

  36. Dimitrov, S. D. et al. Singlet exciton lifetimes in conjugated polymer films for organic solar cells. Polymers 8, 14 (2016).

    Article  Google Scholar 

  37. Rolczynski, B. S. et al. Ultrafast intramolecular exciton splitting dynamics in isolated low-band-gap polymers and their implications in photovoltaic materials design. J. Am. Chem. Soc. 134, 4142–4152 (2012).

    Article  CAS  Google Scholar 

  38. He, Z. et al. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photon. 9, 174–179 (2015).

    Article  CAS  Google Scholar 

  39. Tamai, Y., Ohkita, H., Benten, H. & Ito, S. Exciton diffusion in conjugated polymers: from fundamental understanding to improvement in photovoltaic conversion efficiency. J. Phys. Chem. Lett. 6, 3417–3428 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a David and Lucile Packard Fellowship for Science and Engineering to N.S.G., by The Dow Chemical Company under contract #244699, and by STROBE, A National Science Foundation Science and Technology Center under Grant No. DMR 1548924. Instrument development was supported by the Director, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division, of the US Department of Energy under Contract No. DEAC02-05CH11231. We thank A. Tosi and M. Buttafava of SPAD lab, Politecnico di Milano, for discussions and the generous trial of the fast-gated SPAD and N. Bertone and PicoQuant GmbH for providing a demo of the HydraHarp400 photon counting apparatus. We thank D. M. Neumark for the use of a grating stretcher. S.B.P. acknowledges a Department of Energy Graduate Research Fellowship (contract no. DE-AC05-060R23100), R.N. thanks the Philomathia Foundation for postdoctoral support, and N.S.G. acknowledges an Alfred P. Sloan Research Fellowship and the Camille and Henry Dreyfus Teacher-Scholar Program.

Author information

Authors and Affiliations

Authors

Contributions

S.B.P., L.D.S.G. and N.S.G. designed the research. S.B.P. and L.D.S.G. constructed the apparatus and performed the experiments. L.D.S.G. prepared the samples. S.B.P. performed and analysed the simulations. R.N. aided in the design and interpretation of the simulations. N.S.G. supervised the project. S.B.P. and N.S.G. wrote the manuscript and all authors revised and approved the manuscript.

Corresponding author

Correspondence to Naomi S. Ginsberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penwell, S., Ginsberg, L., Noriega, R. et al. Resolving ultrafast exciton migration in organic solids at the nanoscale. Nature Mater 16, 1136–1141 (2017). https://doi.org/10.1038/nmat4975

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4975

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing