Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase coexistence and electric-field control of toroidal order in oxide superlattices

Abstract

Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO3/SrTiO3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a1/a2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural evolution of ferroelectric and vortex phases with superlattice periodicity.
Figure 2: Unravelling the nanoscale distribution of ferroelectric and vortex phases.
Figure 3: Exploring the phase boundary between a1/a2 and vortex phases.
Figure 4: Phase-field studies of electric-field control of ferroelectric and vortex phases.
Figure 5: Reversible electric-field control of ferroelectric and vortex phases.

Similar content being viewed by others

References

  1. Dagotto, E. Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763–840 (1994).

    Article  CAS  Google Scholar 

  2. Tokura, Y. & Tomioka, Y. Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200, 1–23 (1999).

    Article  CAS  Google Scholar 

  3. Dagotto, E. Nanoscale Phase Separation and Colossal Magnetoresistance (Springer, 2003).

    Book  Google Scholar 

  4. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    Article  CAS  Google Scholar 

  5. Manfred, F. Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005).

    Article  Google Scholar 

  6. Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  7. Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  8. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    Article  CAS  Google Scholar 

  9. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  CAS  Google Scholar 

  10. Zubko, P., Gariglio, S., Gabay, M., Ghosez, P. & Triscone, J.-M. Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141–165 (2011).

    Article  CAS  Google Scholar 

  11. Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413–415 (1994).

    Article  CAS  Google Scholar 

  12. Uehara, M., Mori, S., Chen, C. H. & Cheong, S. W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999).

    Article  CAS  Google Scholar 

  13. Noheda, B. & Cox, D. E. Bridging phases at the morphotropic boundaries of lead oxide solid solutions. Phase Transit. 79, 5–20 (2006).

    Article  CAS  Google Scholar 

  14. Jaffe, B., Cook, W. R. & Jaffe, H. Piezoelectric Ceramics (Academic, 1971).

    Google Scholar 

  15. Choi, S. W., Shrout, R. T. R., Jang, S. J. & Bhalla, A. S. Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Ferroelectrics 100, 29–38 (1989).

    Article  CAS  Google Scholar 

  16. Saito, Y. et al. Lead-free piezoceramics. Nature 432, 84–87 (2004).

    Article  CAS  Google Scholar 

  17. Roszler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    Article  Google Scholar 

  18. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  Google Scholar 

  19. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  CAS  Google Scholar 

  20. Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    Article  CAS  Google Scholar 

  21. Prosandeev, S., Ponomareva, I., Naumov, I., Kornev, I. & Bellaiche, L. Original properties of dipole vortices in zero-dimensional ferroelectrics. J. Phys. Condens. Matter 20, 193201 (2008).

    Article  Google Scholar 

  22. Prosandeev, S. et al. Natural optical activity and its control by electric field in electrotoroidic systems. Phys. Rev. B 87, 195111 (2013).

    Article  Google Scholar 

  23. Chen, W. J., Zheng, Y., Wang, B. & Liu, J. Y. Coexistence of toroidal and polar domains in ferroelectric systems: a strategy for switching ferroelectric vortex. J. Appl. Phys. 115, 214106 (2014).

    Article  Google Scholar 

  24. Chen, W. J., Zheng, Y. & Wang, B. Large and tunable polar-toroidal coupling in ferroelectric composite nanowires toward superior electromechanical responses. Sci. Rep. 5, 11165 (2015).

    Article  CAS  Google Scholar 

  25. Hans, S. Some symmetry aspects of ferroics and single phase multiferroics. J. Phys. Condens. Matter 20, 434201 (2008).

    Article  Google Scholar 

  26. Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    Article  CAS  Google Scholar 

  27. Pertsev, N. A. & Zembilgotov, A. G. Energetics and geometry of 90° domain structures in epitaxial ferroelectric and ferroelastic films. J. Appl. Phys. 78, 6170–6180 (1995).

    Article  CAS  Google Scholar 

  28. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    Article  CAS  Google Scholar 

  29. Hong, Z. et al. Stability of polar vortex lattice in ferroelectric superlattices. Nano Lett. 17, 2246–2252 (2017).

    Article  CAS  Google Scholar 

  30. Prosandeev, S., Ponomareva, I., Kornev, I., Naumov, I. & Bellaiche, L. Controlling toroidal moment by means of an inhomogeneous static field: an ab initio study. Phys. Rev. Lett. 96, 237601 (2006).

    Article  CAS  Google Scholar 

  31. Naumov, I. & Fu, H. Vortex-to-polarization phase transformation path in ferroelectric Pb(ZrTi)O3 nanoparticles. Phys. Rev. Lett. 98, 077603 (2007).

    Article  Google Scholar 

  32. Naumov, I. & Bratkovsky, A. M. Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles. Phys. Rev. Lett. 101, 107601 (2008).

    Article  Google Scholar 

  33. Nahas, Y. et al. Discovery of stable skyrmionic state in ferroelectric nanocomposites. Nat. Commun. 6, 8542 (2015).

    Article  CAS  Google Scholar 

  34. Chen, L. Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J. Am. Ceram. Soc. 91, 1835–1844 (2008).

    Article  CAS  Google Scholar 

  35. Xue, F. et al. Phase field simulations of ferroelectrics domain structures in PbZrxTi1−xO3 bilayers. Acta Mater. 61, 2909–2918 (2013).

    Article  CAS  Google Scholar 

  36. Wang, J. J., Ma, X. Q., Li, Q., Britson, J. & Chen, L. Q. Phase transitions and domain structures of ferroelectric nanoparticles: phase field model incorporating strong elastic and dielectric inhomogeneity. Acta Mater. 61, 7591–7603 (2013).

    Article  CAS  Google Scholar 

  37. Li, Y. L., Hu, S. Y., Liu, Z. K. & Chen, L. Q. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta. Mater. 50, 395–411 (2002).

    Article  CAS  Google Scholar 

  38. Li, Y. L., Hu, S. Y., Liu, Z. K. & Chen, L. Q. Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl. Phys. Lett. 81, 427–429 (2002).

    Article  CAS  Google Scholar 

  39. Chen, L. Q. & Shen, J. Applications of semi-implicit Fourier spectral method to phase field equations. Comput. Phys. Commun. 108, 147–158 (1998).

    Article  CAS  Google Scholar 

  40. Haun, M. J., Furman, E., Jiang, S. J., Mckinstry, H. A. & Cross, L. E. Thermodynamic theory of PbTiO3 . J. Appl. Phys. 62, 3331–3338 (1987).

    Article  CAS  Google Scholar 

  41. Sheng, G. et al. A modified Landau–Devonshire thermodynamic potential for strontium titanate. Appl. Phys. Lett. 96, 232902 (2010).

    Article  Google Scholar 

  42. Chen, Z. H., Damodaran, A. R., Xu, R., Lee, S. & Martin, L. W. Effect of ‘symmetry mismatch’ on the domain structure of rhombohedral BiFeO3 thin films. Appl. Phys. Lett. 104, 182908 (2014).

    Article  Google Scholar 

  43. Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).

    Article  CAS  Google Scholar 

  44. Wojde, J. C., Hermet, P., Ljungberg, M. P., Ghosez, P. & Iniguez, J. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J. Phys. Condens. Matter 25, 305401 (2013).

    Article  Google Scholar 

  45. Ophus, C., Nelson, C. T. & Ciston, J. Correcting nonlinear drift distortion of scanning probe microscopy from image pairs with orthogonal scan directions. Ultramicroscopy 162, 1–9 (2016).

    Article  CAS  Google Scholar 

  46. Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011).

    Article  CAS  Google Scholar 

  47. Glazer, A. M. & Mabud, S. A. Powder profile refinement of lead zirconium titanate at several temperatures. II. PbTiO3 . Acta Crystallogr. B 34, 1065–1070 (1978).

    Article  Google Scholar 

  48. Neacsu, C. C., van Aken, B. B., Fiebig, M. & Raschke, M. B. Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3 . Phys. Rev. B 79, 100107 (2009).

    Article  Google Scholar 

  49. Park, K. D. et al. Hybrid tip-enhanced nanospectroscopy and nanoimaging of monolayer WSe2 with local strain control. Nano Lett. 16, 2621–2627 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.R.D. acknowledges support from the Army Research Office under grant W911NF-14-1-0104 and the Department of Energy, Office of Science, Office of Basic Energy Sciences under grant no. DE-SC0012375 for synthesis and structural study of the materials. Z.H. acknowledges support from NSF-MRSEC grant number DMR-1420620 and NSF-MWN grant number DMR-1210588. A.K.Y. acknowledges support from the Office of Basic Energy Sciences, US Department of Energy DE-AC02-05CH11231. C.T.N. acknowledge support from the Office of Basic Energy Sciences, US Department of Energy DE-AC02-05CH11231. S.L.H. acknowledges support from the National Science Foundation under the MRSEC programme (DMR-1420620). M.R.M. acknowledges support from the National Science Foundation Graduate Research Fellowship under grant number DGE-1106400. K.-D.P., V.K. and M.B.R. acknowledge support from the US Department of Energy, Office of Basic Sciences, Division of Material Sciences and Engineering, under Award No. DE-SC0008807. A.F. acknowledges support from the Swiss National Science Foundation. P.G.-F. and J.J. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through grant number FIS2015-64886-C5-2-P.J.Í. is supported by the Luxembourg National Research Fund (Grant FNR/C15/MS/10458889 NEWALLS). L.-Q.C. is supported by the US Department of Energy, Office of Basic Energy Sciences under Award FG02-07ER46417. R.R. and L.W.M. acknowledge support from the Gordon and Betty Moore Foundation’s EPiQS Initiative, under grant GBMF5307. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Nanodiffraction measurements were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Electron microscopy of superlattice structures was performed at the Molecular Foundry at Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, US Department of Energy (DE-AC02-05CH11231).

Author information

Authors and Affiliations

Authors

Contributions

A.R.D., J.D.C., R.R. and L.W.M. conceived of the central concepts and designed the experiments. A.R.D., H.L. and M.R.M. conducted the synchrotron and laboratory X-ray diffraction studies. J.D.C. and A.R.D. conducted the scanning probe-based PFM measurements. Z.H. performed and analysed the phase-field simulations. A.K.Y. and M.R.M. synthesized the materials. C.T.N. and S.L.H. performed the TEM-based characterization of the superlattice samples, along with the detailed polarization vector analysis. K.-D.P. and V.K. performed the near- and far-field SHG measurements. A.F. conducted the PEEM measurements. Y.D., Z.C., H.Z. and H.L. conducted the synchrotron nanodiffraction studies. P.A.-P. and J.J. completed the second-principles simulations that were analysed by P.A.-P., P.G.-F., J.Í. and J.J. A.S., M.B.R., L.-Q.C. and D.D.F. contributed to analysis, discussions, and understanding of the data and the development of the manuscript. A.R.D., R.R. and L.W.M. wrote the manuscript. All authors discussed the results and implications of the work and read, edited and commented on the manuscript at all stages.

Corresponding author

Correspondence to L. W. Martin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1647 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damodaran, A., Clarkson, J., Hong, Z. et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nature Mater 16, 1003–1009 (2017). https://doi.org/10.1038/nmat4951

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4951

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing