Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Advanced structural ceramics in aerospace propulsion

Humankind's aerospace aspirations are placing unprecedented demands on vehicle propulsion systems. Advanced structural ceramics are playing a key role in addressing these challenges.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interplay between temperature capabilities of engine materials, gas temperatures and engine performance.
Figure 2: High-temperature mechanical properties of various materials.
Figure 3: Schematic examples of 3D fibre-tow textile preforms.
Figure 4: Hypersonic vehicle and materials properties.
Figure 5: Examples of rocket nozzles made of hollow CMCs.

References

  1. National Research Council. Materials Needs and Research and Development Strategy for Future Military Aerospace Propulsion Systems (National Academies Press, 2011).

  2. Johnson, S. M. In Engineered Ceramics: Current Status and Future Prospects (eds Ohji, T. & Singh, M.) 224–243 (Wiley, 2016).

    Google Scholar 

  3. Greatrix, D. R. Powered Flight: The Engineering of Aerospace Propulsion (Springer, 2012).

    Book  Google Scholar 

  4. Langston, L. S. Mech. Eng. 133, 30–33 (2011).

    Article  Google Scholar 

  5. Forecast international predicts tremendous world growth for gas turbines over next 15 years. Forecast International http://go.nature.com/29jSZ7o (2014).

  6. Padture, N. P., Gell, M. & Jordan, E. H. Science 296, 280–284 (2002).

    Article  CAS  Google Scholar 

  7. Evans, A. G., Clarke, D. R. & Levi, C. G. J. Eur. Ceram. Soc. 28, 1405–1419 (2008).

    Article  CAS  Google Scholar 

  8. Clarke, D. R., Oechsner, M. & Padture, N. P. MRS Bull. 37, 891–898 (2012).

    Article  CAS  Google Scholar 

  9. Pan, W., Phillpot, S. R., Wan, C., Chernatynskiy, A. & Qu, Z. MRS Bull. 37, 917–922 (2012).

    Article  CAS  Google Scholar 

  10. Levi, C. G., Hutchinson, J. W., Vidal-Sétif, M-H. & Johnson, C. A. MRS Bull. 37, 932–941 (2012).

    Article  CAS  Google Scholar 

  11. Maloney, M. J. Thermal barrier coating systems and materials. US patent 6,284,323 (2001).

  12. Krause, A. R., Garces, H. F., Senturk, B. S. & Padture, N. P. J. Am. Ceram. Soc. 97, 3950–3957 (2014).

    Article  CAS  Google Scholar 

  13. Viswanathan, V., Dwivedi, G. & Sampath, S. J. Am. Ceram. Soc. 98, 1769–1777 (2015).

    Article  CAS  Google Scholar 

  14. Perepezko, J. H. Science 326, 1068–1069 (2009).

    Article  CAS  Google Scholar 

  15. Kellner, T. Made in rocket city: GE to mass-produce advanced space age material in the U.S. for the first time. GE Reports http://go.nature.com/291Kh1T (2015).

    Google Scholar 

  16. Heidenreich, B. In Ceramic Matrix Composites: Materials, Modeling and Technology (eds Bansal, N. P. & Lamon, J.) 147–216 (Wiley, 2015).

    Google Scholar 

  17. Evans, A. G. & Zok, F. W. J. Mater. Sci. 29, 3857–3896 (1994).

    Article  CAS  Google Scholar 

  18. Marshall, D. B. & Cox, B. N. Annu. Rev. Mater. Sci. 38, 425–443 (2008).

    Article  CAS  Google Scholar 

  19. Dever, J. A., Nathal, M. V. & DiCarlo, J. A. J. Aerospace Eng. 26, 500–514 (2013).

    Article  Google Scholar 

  20. Grady, J. E. CMC Technology Advancements for Gas Turbine Engine Applications (NASA, 2013); http://go.nature.com/29350Rr

  21. DiCarlo, J. A. In Ceramic Matrix Composites: Materials, Modeling and Technology (eds Bansal, N. P. & Lamon, J.) 217–235 (Wiley, 2015).

    Google Scholar 

  22. Keller, K. A., Jefferson, G. & Kerans, R. J. In Ceramic Matrix Composites: Materials, Modeling and Technology (eds Bansal, N. P. & Lamon, J.) 236–272 (Wiley, 2015).

    Google Scholar 

  23. Marshall, D. B. & Cox, B. N. In Encylopedia of Aerospace Engineering (eds Blockley, R. & Shyy, W.) 1–12 (Wiley, 2010).

    Google Scholar 

  24. Marshall, D. et al. National Hypersonic Science Center for Materials and Structures Report No. ADA609952 (Air Force Office of Scientific Research, 2014).

    Book  Google Scholar 

  25. Bale, H. A. et al. Nature Mater. 12, 40–46 (2013).

    Article  CAS  Google Scholar 

  26. Cox, B. N. et al. Annu. Rev. Mater. Sci. 44, 479–529 (2014).

    Article  CAS  Google Scholar 

  27. Meschter, P. J., Opila, E. J., Jacobson, N. S. Annu. Rev. Mater. Sci. 43, 559–588 (2013).

    Article  CAS  Google Scholar 

  28. Zhu, D. In Engineered Ceramics: Current Status and Future Prospects (eds Ohji, T. & Singh, M.) 187–202 (Wiley, 2016).

    Google Scholar 

  29. Sampath, S., Schulz, U, Jarligo, M. O. & Kuroda, S. MRS Bull. 37, 903–910 (2012).

    Article  CAS  Google Scholar 

  30. Wie, D. M. V., D'Alessio, S. M. & White, M. E., J. Hopkins APL Tech. D. 26, 430–437 (2005).

    Google Scholar 

  31. Norris, G. X-51A waverider achieves goal on final flight. Aviation Week Network http://go.nature.com/290SDmC (2013).

    Google Scholar 

  32. Fahrenholtz, W. G. In Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications (eds Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E. & Zhou, Y.) 6–32 (Wiley, 2014).

    Google Scholar 

  33. Jackson, T. A., Eklund, D. R. & Fink, A. J. J. Mater. Sci. 39, 5905–5913 (2004).

    Article  CAS  Google Scholar 

  34. National Research Council. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (National Academies Press, 2008).

  35. Materials Genome Initiative Strategic Plan (NSTC, 2014).

Download references

Acknowledgements

N.P.P. thanks the Office of Naval Research (grant numbers N00014-13-1-0459 and N00014-15-1-2375), the Department of Energy (grant numbers DE-FE0008933 and DE-FG02-10ER4677) and the II-VI Foundation for the research support. Stimulating discussions with D. Marshall and B. Cox of Teledyne Scientific Company are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin P. Padture.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padture, N. Advanced structural ceramics in aerospace propulsion. Nature Mater 15, 804–809 (2016). https://doi.org/10.1038/nmat4687

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4687

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing