Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Morphology selection via geometric frustration in chiral filament bundles

Abstract

In assemblies, the geometric frustration of a locally preferred packing motif leads to anomalous behaviours, from self-limiting growth to defects in the ground state1. Here, we demonstrate that geometric frustration selects the equilibrium morphology of cohesive bundles of chiral filaments, an assembly motif critical to a broad range of biological and synthetic nanomaterials. Frustration of inter-filament spacing leads to optimal shapes of self-twisting bundles that break the symmetries of packing and of the underlying inter-filament forces, paralleling a morphological instability in spherical two-dimensional crystals2,3,4. Equilibrium bundle morphology is controlled by a parameter that characterizes the relative costs of filament bending and the straining of cohesive bonds between filaments. This parameter delineates the boundaries between stable, isotropic cylindrical bundles and anisotropic, twisted-tape bundles. We also show how the mechanical and interaction properties of constituent amyloid fibrils may be extracted from the mesoscale dimensions of the anisotropic bundles that they form.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Twisted bundle morphology and geometric frustration.
Figure 2: Continuum theory of size and morphology selection.
Figure 3: Discrete-filament simulations of twisted bundles.
Figure 4: Morphology selection of amyloid fibres.

Similar content being viewed by others

References

  1. Sadoc, J.-F. & Mosseri, R. Geometrical Frustration (Cambridge Univ. Press, 2006).

    Google Scholar 

  2. Meng, G., Paulose, J., Nelson, D. R. & Manoharan, V. N. Elastic instability of a crystal growing on a curved surface. Science 343, 634–637 (2014).

    Article  CAS  Google Scholar 

  3. Schneider, S. & Gompper, G. Shapes of crystalline domains on spherical fluid vesicles. Europhys. Lett. 70, 136–142 (2005).

    Article  CAS  Google Scholar 

  4. Morozov, A. Y. & Bruinsma, R. F. Assembly of viral capsids, buckling, and the Asaro–Grinfeld–Tiller instability. Phys. Rev. E 81, 041925 (2010).

    Article  Google Scholar 

  5. Douglas, J. F. Theoretical issues relating to thermally reversible gelation by supermolecular fiber formation. Langmuir 25, 8386–8391 (2009).

    Article  CAS  Google Scholar 

  6. Wang, Y., Xu, J., Wang, Y. & Chen, H. Emerging chirality in nanoscience. Chem. Soc. Rev. 42, 2930–2962 (2013).

    Article  CAS  Google Scholar 

  7. Weisel, J. W., Nagaswami, C. & Makowski, L. Twisting of fibrin fibers limits their radial growth. Proc. Natl Acad. Sci. USA 84, 8991–8995 (1987).

    Article  CAS  Google Scholar 

  8. Bouligand, Y. Liquid crystals and biological morphogenesis: ancient and new questions. C.R. Chim. 11, 281–296 (2008).

    Article  CAS  Google Scholar 

  9. Giraud-Guille, M. M., Mosser, G. & Belamie, E. Liquid crystallinity in collagen systems in vitro and in vivo. Curr. Opin. Colloid Interface Sci. 13, 303–313 (2008).

    Article  CAS  Google Scholar 

  10. Rubin, N., Perugia, E., Goldschmidt, M., Fridkin, M. & Addadi, L. Chirality of amyloid suprastructures. J. Am. Chem. Soc. 130, 4602–4603 (2008).

    Article  CAS  Google Scholar 

  11. Kurouski, D. et al. Is supramolecular filament chirality the underlying cause of major morphology differences in amyloid fibrils? J. Am. Chem. Soc. 136, 2302–2312 (2014).

    Article  CAS  Google Scholar 

  12. Makowski, L. & Magdoff-Fairchild, B. Polymorphism of sickle cell hemoglobin aggregates: structural basis for limited radial growth. Science 234, 1228–1231 (1986).

    Article  CAS  Google Scholar 

  13. Kornyshev, A. A., Lee, D. J., Leikin, S. & Wynveen, A. Structure and interactions of biological helices. Rev. Mod. Phys. 79, 943–996 (2007).

    Article  CAS  Google Scholar 

  14. Grason, G. M. & Bruinsma, R. F. Chirality and equilibrium biopolymer bundles. Phys. Rev. Lett. 99, 098101 (2007).

    Article  Google Scholar 

  15. Yang, Y., Meyer, R. B. & Hagan, M. F. Self-limited self-assembly of chiral filaments. Phys. Rev. Lett. 104, 258102 (2010).

    Article  Google Scholar 

  16. Harris, A. B., Kamien, R. D. & Lubensky, T. C. Molecular chirality and chiral parameters. Rev. Mod. Phys. 71, 1745–1757 (1999).

    Article  CAS  Google Scholar 

  17. Bruss, I. R. & Grason, G. M. Non-Euclidean geometry of twisted filament bundle packing. Proc. Natl Acad. Sci. USA 109, 10781–10786 (2012).

    Article  CAS  Google Scholar 

  18. Bausch, A. R. Grain boundary scars and spherical crystallography. Science 299, 1716–1718 (2003).

    Article  CAS  Google Scholar 

  19. Irvine, W. T. M., Vitelli, V. & Chaikin, P. M. Pleats in crystals on curved surfaces. Nature 468, 947–951 (2010).

    Article  CAS  Google Scholar 

  20. Grason, G. M. Colloquium: Geometry and optimal packing of twisted columns and filaments. Rev. Mod. Phys. 87, 401–419 (2015).

    Article  Google Scholar 

  21. Grason, G. M. Topological defects in twisted bundles of two-dimensionally ordered filaments. Phys. Rev. Lett. 105, 045502 (2010).

    Article  Google Scholar 

  22. Grason, G. M. Braided bundles and compact coils: the structure and thermodynamics of hexagonally packed chiral filament assemblies. Phys. Rev. E 79, 041919 (2009).

    Article  Google Scholar 

  23. Seung, H. S. & Nelson, D. R. Defects in flexible membranes with crystalline order. Phys. Rev. A 38, 1005–1018 (1988).

    Article  CAS  Google Scholar 

  24. Lidmar, J., Mirny, L. & Nelson, D. R. Virus shapes and buckling transitions in spherical shells. Phys. Rev. E 68, 051910 (2003).

    Article  Google Scholar 

  25. Vernizzi, G., Sknepnek, R. & Olvera de la Cruz, M. Platonic and Archimedean geometries in multicomponent elastic membranes. Proc. Natl Acad. Sci. USA 108, 4292–4296 (2011).

    Article  CAS  Google Scholar 

  26. Ghafouri, R. & Bruinsma, R. Helicoid to spiral ribbon transition. Phys. Rev. Lett. 94, 138101 (2005).

    Article  Google Scholar 

  27. Bruss, I. R. & Grason, G. M. Topological defects, surface geometry and cohesive energy of twisted filament bundles. Soft Matter 9, 8327–8345 (2013).

    Article  CAS  Google Scholar 

  28. Aggeli, A. et al. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta-sheet tapes, ribbons, fibrils, and fibers. Proc. Natl Acad. Sci. USA 98, 11857–11862 (2001).

    Article  CAS  Google Scholar 

  29. Adamcik, J. et al. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nature Nanotech. 5, 423–428 (2010).

    Article  CAS  Google Scholar 

  30. Ridgley, D. M., Claunch, E. C. & Barone, J. R. The effect of processing on large, self-assembled amyloid fibers. Soft Matter 8, 10298–10306 (2012).

    Article  CAS  Google Scholar 

  31. Ridgley, D. M. & Barone, J. R. Evolution of the amyloid fiber over multiple length scales. ACS Nano 7, 1006–1015 (2013).

    Article  CAS  Google Scholar 

  32. Crocker, J. C. & Grier, D. G. Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys. Rev. Lett. 73, 352–355 (1994).

    Article  CAS  Google Scholar 

  33. Broedersz, C. P. & MacKintosh, F. C. Modeling semiflexible polymer networks. Rev. Mod. Phys. 86, 995–1036 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this research by was provided through NSF CAREER grant DMR 09-55760 and a fellowship from the Alfred P. Sloan Foundation (D.M.H., I.R.B. and G.M.G.), through NSF-CMMI 08-56262, USDA-NIFA #2010-65504-20429, NSF-EEC 11-56645, and the Virginia Tech Institute for Critical Technology and Applied Science (J.R.B.). Numerical simulations were performed on the UMass Shared Cluster at the Massachusetts Green High Performance Computing Center. The authors are grateful for valuable discussions with A. Dinsmore and input on this manuscript from N. Menon, P. Ziherl, H. Hagan and A. Gopinathan.

Author information

Authors and Affiliations

Authors

Contributions

G.M.G. developed the continuum theory and its application to anisotropic bundle morphology. D.M.H., I.R.B. and G.M.G. developed the simulation approach to anisotropic bundle morphologies. D.M.H. carried out and analysed simulations. J.R.B. performed SEM analysis of mesoscale amyloid fibre morphologies. D.M.H. and G.M.G. applied continuum theory predictions to experimental data. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Gregory M. Grason.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, D., Bruss, I., Barone, J. et al. Morphology selection via geometric frustration in chiral filament bundles. Nature Mater 15, 727–732 (2016). https://doi.org/10.1038/nmat4598

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4598

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing