Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system

Subjects

Abstract

Spin–orbit torque (SOT)-induced magnetization switching shows promise for realizing ultrafast and reliable spintronics devices. Bipolar switching of the perpendicular magnetization by the SOT is achieved under an in-plane magnetic field collinear with an applied current. Typical structures studied so far comprise a nonmagnet/ferromagnet (NM/FM) bilayer, where the spin Hall effect in the NM is responsible for the switching. Here we show that an antiferromagnet/ferromagnet (AFM/FM) bilayer system also exhibits a SOT large enough to switch the magnetization of the FM. In this material system, thanks to the exchange bias of the AFM, we observe the switching in the absence of an applied field by using an antiferromagnetic PtMn and ferromagnetic Co/Ni multilayer with a perpendicular easy axis. Furthermore, tailoring the stack achieves a memristor-like behaviour where a portion of the reversed magnetization can be controlled in an analogue manner. The AFM/FM system is thus a promising building block for SOT devices as well as providing an attractive pathway towards neuromorphic computing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample structure and magnetic properties.
Figure 2: RHHZ loops measured with various ICH for non-exchange-biased and exchange-biased structures.
Figure 3: RHICH loops at zero field.
Figure 4: RHICH loops under various HX.
Figure 5: tPtMn dependence of the bias field and critical current (density).

Similar content being viewed by others

References

  1. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  2. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  3. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  4. Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Article  Google Scholar 

  5. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta/CoFeB/MgO. Nature Mater. 12, 240–245 (2013).

    Article  CAS  Google Scholar 

  6. Lee, K.-S., Lee, S.-W., Min, B.-C. & Lee, K.-J. Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl. Phys. Lett. 102, 112410 (2013).

    Article  Google Scholar 

  7. Yamanouchi, M. et al. Three terminal magnetic tunnel junction utilizing the spin Hall effect of iridium-doped copper. Appl. Phys. Lett. 102, 212408 (2013).

    Article  Google Scholar 

  8. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nature Nanotech. 8, 587–593 (2013).

    Article  CAS  Google Scholar 

  9. Zhang, C. et al. Magnetotransport measurements of current induced effective fields in Ta/CoFeB/MgO. Appl. Phys. Lett. 103, 262407 (2013).

    Article  Google Scholar 

  10. Zhang, C. et al. Magnetization reversal induced by in-plane current in Ta/CoFeB/MgO structures with perpendicular magnetic easy axis. J. Appl. Phys. 115, 17C714 (2014).

    Article  Google Scholar 

  11. Cubukcu, M. et al. Spin–orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Appl. Phys. Lett. 104, 042406 (2014).

    Article  Google Scholar 

  12. Lee, K.-S., Lee, S.-W., Min, B.-C. & Lee, K.-J. Thermally activated switching of perpendicular magnet by spin–orbit spin torque. Appl. Phys. Lett. 104, 072413 (2014).

    Article  Google Scholar 

  13. Pai, C.-F. et al. Enhancement of perpendicular magnetic anisotropy and transmission of spin-Hall-effect-induced spin currents by a Hf spacer layer in W/Hf/CoFeB/MgO layer structures. Appl. Phys. Lett. 104, 082407 (2014).

    Article  Google Scholar 

  14. Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nature Mater. 13, 699–704 (2014).

    Article  CAS  Google Scholar 

  15. Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nature Nanotech. 9, 548–554 (2014).

    Article  CAS  Google Scholar 

  16. Yu, G. et al. Current-driven perpendicular magnetization switching in Ta/CoFeB/[TaOx or MgO/TaOx] films with lateral structural asymmetry. Appl. Phys. Lett. 105, 102411 (2014).

    Article  Google Scholar 

  17. Garello, K. et al. Ultrafast magnetization switching by spin–orbit torques. Appl. Phys. Lett. 105, 212402 (2014).

    Article  Google Scholar 

  18. Akyol, M. et al. Current-induced spin–orbit torque switching of perpendicularly magnetized Hf/CoFeB/MgO and Hf/CoFeB/TaOx structures. Appl. Phys. Lett. 106, 162409 (2015).

    Article  Google Scholar 

  19. Zhang, C., Fukami, S., Sato, H., Matsukura, F. & Ohno, H. Spin–orbit torque induced magnetization switching in nano-scale Ta/CoFeB/MgO. Appl. Phys. Lett. 107, 012401 (2015).

    Article  Google Scholar 

  20. Fukami, S., Yamanouchi, M., Ikeda, S. & Ohno, H. Domain wall motion device for nonvolatile memory and logic—Size dependence of device properties. IEEE Trans. Magn. 50, 3401006 (2014).

    Article  Google Scholar 

  21. Hoffmann, A. Spin Hall effect in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    Article  CAS  Google Scholar 

  22. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1259 (2015).

    Article  Google Scholar 

  23. Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article  Google Scholar 

  24. Mendes, J. B. S. et al. Large inverse spin Hall effect in the antiferromagnetic metal Ir20Mn80 . Phys. Rev. B 89, 140406 (2014).

    Article  Google Scholar 

  25. Zhang, W. et al. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).

    Article  Google Scholar 

  26. Tshitoyan, Y. et al. Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn. Phys. Rev. B 92, 214406 (2015).

    Article  Google Scholar 

  27. Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956).

    Article  Google Scholar 

  28. Stiles, M. D. & McMichael, R. D. Model for exchange bias in polycrystalline ferromagnet–antiferromagnet bilayers. Phys. Rev. B 59, 3722–3733 (1999).

    Article  CAS  Google Scholar 

  29. Tsunoda, M. & Takahashi, M. Field independent rotational hysteresis loss on exchange coupled polycrystalline Ni–Fe/Mn–Ir bilayers. J. Appl. Phys. 87, 6415–6417 (2000).

    Article  CAS  Google Scholar 

  30. Chua, L. O. Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

    Article  Google Scholar 

  31. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  CAS  Google Scholar 

  32. Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).

    Article  CAS  Google Scholar 

  33. Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. Nature Mater. 13, 11–20 (2014).

    Article  CAS  Google Scholar 

  34. Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014).

    Article  CAS  Google Scholar 

  35. Suzuki, T. et al. Current-induced effective field in perpendicularly magnetized Ta/CoFeB/MgO wire. Appl. Phys. Lett. 98, 142505 (2011).

    Article  Google Scholar 

  36. Kaplan, B. & Gehring, G. A. The domain structure in ultrathin magnetic films. J. Magn. Magn. Mater. 128, 111–116 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Igarashi, T. Hirata, Y. Kawato, H. Iwanuma and K. Goto for their technical support. A portion of this work was supported by the R&D Project for ICT Key Technology to Realize Future Society of MEXT, R&D Subsidiary Program for Promotion of Academia-Industry Cooperation of METI, ImPACT Program of CSTI, and JSPS KAKENHI 15J04691.

Author information

Authors and Affiliations

Authors

Contributions

S.F. and H.O. planned the study. S.F. deposited the film. S.F. and C.Z. fabricated the samples. S.F. and A.K. performed the measurements and analysed the data. S.D. and S.F. performed the MOKE microscopy observation. S.F. wrote the manuscript with input from H.O., C.Z. and S.D. All authors discussed the results.

Corresponding authors

Correspondence to Shunsuke Fukami or Hideo Ohno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2810 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukami, S., Zhang, C., DuttaGupta, S. et al. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nature Mater 15, 535–541 (2016). https://doi.org/10.1038/nmat4566

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4566

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing