Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide

Abstract

Strong correlations between electrons, spins and lattices—stemming from strong hybridization between transition metal d and oxygen p orbitals—are responsible for the functional properties of transition metal oxides. Artificial oxide heterostructures with chemically abrupt interfaces provide a platform for engineering bonding geometries that lead to emergent phenomena. Here we demonstrate the control of the oxygen coordination environment of the perovskite, SrRuO3, by heterostructuring it with Ca0.5Sr0.5TiO3 (0–4 monolayers thick) grown on a GdScO3 substrate. We found that a Ru–O–Ti bond angle of the SrRuO3 /Ca0.5Sr0.5TiO3 interface can be engineered by layer-by-layer control of the Ca0.5Sr0.5TiO3 layer thickness, and that the engineered Ru–O–Ti bond angle not only stabilizes a Ru–O–Ru bond angle never seen in bulk SrRuO3, but also tunes the magnetic anisotropy in the entire SrRuO3 layer. The results demonstrate that interface engineering of the oxygen coordination environment allows one to control additional degrees of freedom in functional oxide heterostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural characterizations of SRO/CSTO_n/GSO heterostructures (n: number of monolayers in the CSTO layer).
Figure 2: Atomic-level characterization of the oxygen coordination environments (oxygen octahedral distortions) in SRO/CSTO_n/GSO heterostructures.
Figure 3: Magneto-transport properties of the SRO/CSTO_n/GSO heterostructures.

Similar content being viewed by others

References

  1. Goodenough, J. B. Magnetism and the Chemical Bond (Interscience, 1963).

    Google Scholar 

  2. Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).

    Article  CAS  Google Scholar 

  3. Zeches, R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3 . Science 326, 977–980 (2009).

    Article  CAS  Google Scholar 

  4. Lee, J. H. et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 466, 954–958 (2010).

    Article  CAS  Google Scholar 

  5. Bhattacharya, A. & May, S. J. Magnetic oxide heterostructures. Annu. Rev. Mater. Res. 44, 65–90 (2014).

    Article  CAS  Google Scholar 

  6. May, S. J. et al. Control of octahedral rotations in (LaNiO3)n/(SrMnO3)m superlattices. Phys. Rev. B 83, 153411 (2011).

    Article  Google Scholar 

  7. Kim, Y.-M. et al. Interplay of octahedral tilts and polar order in BiFeO3 films. Adv. Mater. 25, 2497–2504 (2013).

    Article  CAS  Google Scholar 

  8. Kan, D., Aso, R., Kurata, H. & Shimakawa, Y. Research Update: Interface-engineered oxygen octahedral tilts in perovskite oxide heterostructures. APL Mater. 3, 062302 (2015).

    Article  Google Scholar 

  9. Rondinelli, J. M., May, S. J. & Freeland, J. W. Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37, 261–270 (2012).

    Article  CAS  Google Scholar 

  10. Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr. B 28, 3384–3392 (1972).

    Article  CAS  Google Scholar 

  11. Woodward, P. M. Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallogr. B 53, 32–43 (1997).

    Article  Google Scholar 

  12. Rondinelli, J. M. & Spaldin, N. A. Structure and properties of functional oxide thin films: insights from electronic-structure calculations. Adv. Mater. 23, 3363–3381 (2011).

    Article  CAS  Google Scholar 

  13. Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    Article  CAS  Google Scholar 

  14. Vailionis, A. et al. Misfit strain accommodation in epitaxial ABO3 perovskites: lattice rotations and lattice modulations. Phys. Rev. B 83, 064101 (2011).

    Article  Google Scholar 

  15. Rondinelli, J. M. & Coh, S. Large isosymmetric reorientation of oxygen octahedra rotation axes in epitaxially strained perovskites. Phys. Rev. Lett. 106, 235502 (2011).

    Article  Google Scholar 

  16. Choi, K. J. et al. Phase-transition temperatures of strained single-crystal SrRuO3 thin films. Adv. Mater. 22, 759–762 (2010).

    Article  CAS  Google Scholar 

  17. Moon, E. J. et al. Spatial control of functional properties via octahedral modulations in complex oxide superlattices. Nature Commun. 5, 5710 (2014).

    Article  CAS  Google Scholar 

  18. Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008).

    Article  CAS  Google Scholar 

  19. Chang, S. H. et al. Thickness-dependent structural phase transition of strained SrRuO3 ultrathin films: the role of octahedral tilt. Phys. Rev. B 84, 104101 (2011).

    Article  Google Scholar 

  20. Biegalski, M. D. et al. Interrelation between structure–magnetic properties in La0.5Sr0.5CoO3 . Adv. Mater. Interfaces 1, 1400203 (2014).

    Article  Google Scholar 

  21. Lu, W., Yang, P., Song, W. D., Chow, G. M. & Chen, J. S. Control of oxygen octahedral rotations and physical properties in SrRuO3 films. Phys. Rev. B 88, 214115 (2013).

    Article  Google Scholar 

  22. Kan, D., Aso, R., Kurata, H. & Shimakawa, Y. Phase control of a perovskite transition-metal oxide through oxygen displacement at the heterointerface. Dalton Trans. 44, 10594–10607 (2015).

    Article  CAS  Google Scholar 

  23. Aso, R., Kan, D., Shimakawa, Y. & Kurata, H. Control of structural distortions in transition-metal oxide films through oxygen displacement at the heterointerface. Adv. Funct. Mater. 24, 5177–5184 (2014).

    Article  CAS  Google Scholar 

  24. Moon, E. J. et al. Effect of interfacial octahedral behavior in ultrathin manganite films. Nano Lett. 2014, 2509–2514 (2014).

    Article  Google Scholar 

  25. Jang, H. W. et al. Metallic and insulating oxide interfaces controlled by electronic correlations. Science 331, 886–889 (2011).

    Article  CAS  Google Scholar 

  26. Chen, Z. H., Damodaran, A. R., Xu, R., Lee, S. & Martin, L. W. Effect of “symmetry mismatch” on the domain structure of rhombohedral BiFeO3 thin films. Appl. Phys. Lett. 104, 182908 (2014).

    Article  Google Scholar 

  27. Koster, G. et al. Structure, physical properties, and applications of SrRuO3 thin films. Rev. Mod. Phys. 84, 253–298 (2012).

    Article  CAS  Google Scholar 

  28. Jones, C. W., Battle, P. D., Lightfoot, P. & Harrison, W. T. A. The structure of SrRuO3 by time-of-flight neutron powder diffraction. Acta Crystallogr. C 45, 365–367 (1989).

    Article  Google Scholar 

  29. Kennedy, B. J. & Hunter, B. A. High-temperature phases of SrRuO3 . Phys. Rev. B 58, 653–658 (1998).

    Article  CAS  Google Scholar 

  30. Borisevich, A. Y. et al. Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett. 105, 087204 (2010).

    Article  CAS  Google Scholar 

  31. Aso, R., Kan, D., Shimakawa, Y. & Kurata, H. Octahedral tilt propagation controlled by A-site cation size at perovskite oxide heterointerfaces. Cryst. Growth Design 14, 2128–2132 (2014).

    Article  CAS  Google Scholar 

  32. Jia, C. L. et al. Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 79, 081405 (2009).

    Article  Google Scholar 

  33. Fister, T. T. et al. Octahedral rotations in strained LaAlO3/SrTiO3 (001) heterostructures. APL Mater. 2, 021102 (2014).

    Article  Google Scholar 

  34. Yamanaka, T., Hirai, N. & Komatsu, Y. Structure change of Ca1−xSrxTiO3 perovskite with composition and pressure. Am. Mineral. 87, 1183–1189 (2002).

    Article  CAS  Google Scholar 

  35. Schubert, J. et al. Structural and optical properties of epitaxial BaTiO3 thin films grown on GdScO3 (110). Appl. Phys. Lett. 82, 3460 (2003).

    Article  CAS  Google Scholar 

  36. Biegalski, M. D. et al. Thermal expansion of the new perovskite substrates DyScO3 and GdScO3 . J. Mater. Res. 20, 952–958 (2011).

    Article  Google Scholar 

  37. Kan, D., Aso, R., Kurata, H. & Shimakawa, Y. Thickness-dependent structure–property relationships in strained (110) SrRuO3 thin films. Adv. Funct. Mater. 23, 1129–1136 (2013).

    Article  CAS  Google Scholar 

  38. Vailionis, A., Siemons, W. & Koster, G. Room temperature epitaxial stabilization of a tetragonal phase in ARuO3 (A = Ca and Sr) thin films. Appl. Phys. Lett. 93, 051909 (2008).

    Article  Google Scholar 

  39. Goodenough, J. B. Electronic and ionic transport properties and other physical aspects of perovskites. Rep. Prog. Phys. 67, 1915–1993 (2004).

    Article  CAS  Google Scholar 

  40. Goldschmidt, V. M. Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926).

    Article  CAS  Google Scholar 

  41. Kanbayasi, A. Magnetic properties of SrRuO3 single crystal. J. Phys. Soc. Jpn 41, 1876–1878 (1976).

    Article  CAS  Google Scholar 

  42. Kanbayasi, A. Magnetic properties of SrRuO3 single crystal. II. J. Phys. Soc. Jpn 44, 89–95 (1978).

    Article  CAS  Google Scholar 

  43. Cao, G., McCall, S., Shepard, M., Crow, J. E. & Guertin, R. P. Thermal, magnetic, and transport properties of single-crystal Sr1−xCaxRuO3 (0 x 1.0). Phys. Rev. B 56, 321–329 (1997).

    Article  CAS  Google Scholar 

  44. Kats, Y., Genish, I., Klein, L., Reiner, J. W. & Beasley, M. R. Large anisotropy in the paramagnetic susceptibility of SrRuO3 films. Phys. Rev. B 71, 100403 (2005).

    Article  Google Scholar 

  45. Allen, P. B. et al. Transport properties, thermodynamic properties, and electronic structure of SrRuO3 . Phys. Rev. B 53, 4393–4398 (1996).

    Article  CAS  Google Scholar 

  46. Liao, Z. et al. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling. Nature Mater. http://dx.doi.org/10.1038/nmat4579 (2016).

  47. Aso, R., Kan, D., Shimakawa, Y. & Kurata, H. Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci. Rep. 3, 2214 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Core Research for Evolutional Science and Technology (CREST) programme of the Japan Science and Technology Agency. The work was also supported by a grant for the Joint Project of Chemical Synthesis Core Research Institutions from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

D.K. conceived the idea and initiated the project. D.K. and R.S. fabricated the samples and performed X-ray structural characterization and transport measurements. R.A. and M.H. collected and analysed the STEM data. H.K. and Y.S. supervised the project. All authors discussed the experimental data and co-wrote the manuscript.

Corresponding author

Correspondence to Daisuke Kan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1726 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, D., Aso, R., Sato, R. et al. Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nature Mater 15, 432–437 (2016). https://doi.org/10.1038/nmat4580

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4580

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing