Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale

Abstract

Nanostructures with chiral geometries exhibit strong polarization rotation. However, achieving reversible modulation of chirality and polarization rotation in device-friendly solid-state films is difficult for rigid materials. Here, we describe nanocomposites, made by conformally coating twisted elastic substrates with films assembled layer-by-layer from plasmonic nanocolloids, whose nanoscale geometry and rotatory optical activity can be reversibly reconfigured and cyclically modulated by macroscale stretching, with up to tenfold concomitant increases in ellipticity. We show that the chiroptical activity at 660 nm of gold nanoparticle composites is associated with circular extinction from linear effects. The polarization rotation at 550 nm originates from the chirality of nanoparticle chains with an S-like shape that exhibit a non-planar buckled geometry, with the handedness of the substrate’s macroscale twist determining the handedness of the S-like chains. Chiroptical effects at the nexus of mechanics, excitonics and plasmonics open new operational principles for optical and optoelectronic devices from nanoparticles, carbon nanotubes and other nanoscale components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strain-modulated rotatory optical activity in AuNP multilayers.
Figure 2: Stresses in twisted PDMS substrates with LBL composite films.
Figure 3: Strain-induced chiroptically active NP assemblies on buckled sides.
Figure 4: Simulated chiroptical properties of S-like AuNP chains.
Figure 5: Strain-modulated chiroptical multilayers from semiconducting nanotubes.

Similar content being viewed by others

References

  1. Pasteur, L. Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire. C. R. Acad. Sci. Paris 26, 535–538 (1848).

    Google Scholar 

  2. Chen, W. et al. Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 9, 2153–2159 (2009).

    Article  CAS  Google Scholar 

  3. Peng, X. et al. Optically active single-walled carbon nanotubes. Nature Nanotech. 2, 361–365 (2007).

    Article  CAS  Google Scholar 

  4. Yeom, J. et al. Chiral templating of self-assembling nanostructures by circularly polarized light. Nature Mater. 14, 66–72 (2015).

    Article  CAS  Google Scholar 

  5. Govorov, A. O., Fan, Z., Hernandez, P., Slocik, J. M. & Naik, R. R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 10, 1374–1382 (2010).

    Article  CAS  Google Scholar 

  6. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  7. Pendry, J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004).

    Article  CAS  Google Scholar 

  8. Valev, V. K., Baumberg, J. J., Sibilia, C. & Verbiest, T. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater. 25, 2517–2534 (2013).

    Article  CAS  Google Scholar 

  9. Fedotov, V. A., Schwanecke, A. S., Zheludev, N. I., Khardikov, V. V. & Prosvirnin, S. L. Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures. Nano Lett. 7, 1996–1999 (2007).

    Article  CAS  Google Scholar 

  10. Schaaff, T. G. & Whetten, R. L. Giant gold-glutathione cluster compounds: intense optical activity in metal-based transitions. J. Phys. Chem. B 104, 2630–2641 (2000).

    Article  CAS  Google Scholar 

  11. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    Article  CAS  Google Scholar 

  12. Song, C. Y. et al. Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures. Nano Lett. 13, 3256–3261 (2013).

    Article  CAS  Google Scholar 

  13. Guerrero-Martínez, A. et al. Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. Angew. Chem. Int. Ed. 50, 5499–5503 (2011).

    Article  Google Scholar 

  14. Liu, S. et al. Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity. Nature Commun. 3, 1215 (2012).

    Article  Google Scholar 

  15. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    Article  CAS  Google Scholar 

  16. Frank, B. et al. Large-area 3D chiral plasmonic structures. ACS Nano 7, 6321–6329 (2013).

    Article  CAS  Google Scholar 

  17. Yeom, B. et al. Chiral plasmonic nanostructures on achiral nanopillars. Nano Lett. 13, 5277–5283 (2013).

    Article  CAS  Google Scholar 

  18. Yang, Y., da Costa, R. C., Fuchter, M. J. & Campbell, A. J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nature Photon. 7, 634–638 (2013).

    Article  CAS  Google Scholar 

  19. Zhao, Y. et al. Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection. Nano Lett. 14, 3908–3913 (2014).

    Article  CAS  Google Scholar 

  20. Li, Z. T. et al. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 134, 3322–3325 (2012).

    Article  CAS  Google Scholar 

  21. Schreiber, R. et al. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nature Commun. 4, 2948 (2013).

    Article  Google Scholar 

  22. Ma, W. et al. Chiral plasmonics of self-assembled nanorod dimers. Sci. Rep. 3, 1934 (2013).

    Article  Google Scholar 

  23. Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).

    Article  CAS  Google Scholar 

  24. Pérez-Juste, J., Rodríguez-González, B., Mulvaney, P. & Liz-Marzán, L. M. Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films. Adv. Funct. Mater. 15, 1065–1071 (2005).

    Article  Google Scholar 

  25. Nogueira, G. M., Banerjee, D., Cohen, R. E. & Rubner, M. F. Spray-layer-by-layer assembly can more rapidly produce optical-quality multistack heterostructures. Langmuir 27, 7860–7867 (2011).

    Article  CAS  Google Scholar 

  26. Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    Article  CAS  Google Scholar 

  27. Hu, T. et al. Self-organization of plasmonic and excitonic nanoparticles into resonant chiral supraparticle assemblies. Nano Lett. 14, 6799–6810 (2014).

    Article  CAS  Google Scholar 

  28. Zhang, L., Lu, Q. & Liu, M. Fabrication of chiral Langmuir-Schaefer films from achiral tpps and amphiphiles through the adsorption at the air/water interface. J. Phys. Chem. B 107, 2565–2569 (2003).

    Article  CAS  Google Scholar 

  29. Arteaga, O., Freudenthal, J., Wang, B. & Kahr, B. Mueller matrix polarimetry with four photoelastic modulators: theory and calibration. Appl. Opt. 51, 6805–6817 (2012).

    Article  Google Scholar 

  30. Ben-Moshe, A. et al. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nature Commun. 5, 4302 (2014).

    Article  CAS  Google Scholar 

  31. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.K. thanks the Rackham Graduate School for a predoctoral fellowship. O.A. thanks the European Commission for Marie Curie IIF Fellowship PIIF-GA-2012-330513, Nanochirality. This material is based on work partially supported by the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000957. We acknowledge support from NSF under grant ECS-0601345; CBET 0933384; CBET 0932823; and CBET 1036672. The work is also partially supported by the US Department of Defense under Grant Award No. MURI W911NF-12-1-0407. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Education) (No. NRF-2015R1D1A1A01058029). We thank the University of Michigan’s Electron Microscopy and Analysis Laboratory (EMAL) for its assistance with electron microscopy, and for NSF grants (numbers DMR-0320740 and DMR-9871177), for funding the FEI Nova Nanolab Dualbeam Focused Ion Beam Workstation and Scanning Electron Microscope and the JEOL 2010F analytical electron microscope used in this work. We also thank EMAL and the College of Engineering for assistance with the Bruker NanoStar Small-Angle X-ray Scattering System. We wish to acknowledge use of the Microscopy & Image-analysis Laboratory (MIL) at the University of Michigan for preparation of STED samples and obtaining images.

Author information

Authors and Affiliations

Authors

Contributions

N.A.K., Y.K. and B.Y. conceived the project and designed the experiments. Y.K. and B.Y. carried out the design and fabrication of the chiroptical LBL films, performed basic optical experiments and carried out the calculations. O.A. provided fundamentals of the Mueller matrix. Y.K. obtained all Mueller matrix data, and Y.K. and O.A. analysed the data. Y.K. obtained STED microscopy data. S.J.Y., S.-G.L. and J.-G.K. obtained 3D TEM tomography data.

Corresponding author

Correspondence to Nicholas A. Kotov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 13619 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 211972 kb)

Supplementary Movie 2

Supplementary Movie 2 (AVI 333786 kb)

Supplementary Movie 3

Supplementary Movie 3 (AVI 190467 kb)

Supplementary Movie 4

Supplementary Movie 4 (AVI 665725 kb)

Supplementary Movie 5

Supplementary Movie 5 (WMV 11720 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Yeom, B., Arteaga, O. et al. Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale. Nature Mater 15, 461–468 (2016). https://doi.org/10.1038/nmat4525

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4525

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing