Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Counting electrons on supported nanoparticles

Abstract

Electronic interactions between metal nanoparticles and oxide supports control the functionality of nanomaterials, for example, the stability, the activity and the selectivity of catalysts1,2,3,4,5. Such interactions involve electron transfer across the metal/support interface. In this work we quantify this charge transfer on a well-defined platinum/ceria catalyst at particle sizes relevant for heterogeneous catalysis. Combining synchrotron-radiation photoelectron spectroscopy, scanning tunnelling microscopy and density functional calculations we show that the charge transfer per Pt atom is largest for Pt particles of around 50 atoms. Here, approximately one electron is transferred per ten Pt atoms from the nanoparticle to the support. For larger particles, the charge transfer reaches its intrinsic limit set by the support. For smaller particles, charge transfer is partially suppressed by nucleation at defects. These mechanistic and quantitative insights into charge transfer will help to make better use of particle size effects and electronic metal–support interactions in metal/oxide nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural characterization of the Pt/CeO2(111) model catalyst.
Figure 2: ‘Counting’ the electrons transferred owing to the EMSI.
Figure 3: Summary of density functional calculations.

References

  1. Graciani, J. et al. Highly active copper–ceria and copper–ceria–titania catalysts for methanol synthesis from CO2 . Science 345, 546–550 (2014).

    Article  CAS  Google Scholar 

  2. Campbell, C. T. Catalyst–support interactions: Electronic perturbations. Nature Chem. 4, 597–598 (2012).

    Article  CAS  Google Scholar 

  3. Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811–814 (2002).

    Article  CAS  Google Scholar 

  4. Bruix, A. et al. A new type of strong metal–support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J. Am. Chem. Soc. 134, 8968–8974 (2012).

    Article  CAS  Google Scholar 

  5. Vayssilov, G. N. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nature Mater. 10, 310–315 (2011).

    Article  CAS  Google Scholar 

  6. Ertl, G., Knözinger, H., Schüth, F. & Weitkamp, J. Handbook of Heterogeneous Catalysis 2nd edn (Wiley, 2008).

    Book  Google Scholar 

  7. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003).

    Article  CAS  Google Scholar 

  8. Chen, M. S. & Goodman, D. W. The structure of catalytically active gold on titania. Science 306, 252–255 (2004).

    Article  CAS  Google Scholar 

  9. Bruix, A. et al. Maximum noble metal efficiency in catalytic materials: Atomically dispersed surface platinum. Angew. Chem. Int. Ed. 53, 10525–10530 (2014).

    Article  CAS  Google Scholar 

  10. Trovarelli, A. & Fornasiero, P. Catalysis by Ceria and Related Materials (Imperial College Press, 2013).

    Book  Google Scholar 

  11. Landman, U. et al. Factors in gold nanocatalysis: oxidation of CO in the non-scalable size regime. Top. Catal. 44, 145–158 (2007).

    Article  CAS  Google Scholar 

  12. Hansen, P. L. et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002).

    Article  CAS  Google Scholar 

  13. Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935–938 (2003).

    Article  CAS  Google Scholar 

  14. Tauster, S. J., Fung, S. C., Baker, R. T. K. & Horsley, J. A. Strong interactions in supported-metal catalysts. Science 211, 1121–1125 (1981).

    Article  CAS  Google Scholar 

  15. Dulub, O., Hebenstreit, W. & Diebold, U. Imaging cluster surfaces with atomic resolution: the strong metal–support interaction state of Pt supported on TiO2(110). Phys. Rev. Lett. 84, 3646–3649 (2000).

    Article  CAS  Google Scholar 

  16. Pacchioni, G. Electronic interactions and charge transfers of metal atoms and clusters on oxide surfaces. Phys. Chem. Chem. Phys. 15, 1737–1757 (2013).

    Article  CAS  Google Scholar 

  17. Sanchez, A. et al. When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103, 9573–9578 (1999).

    Article  CAS  Google Scholar 

  18. Campbell, C. T. & Sellers, J. R. V. Anchored metal nanoparticles: effects of support and size on their energy, sintering resistance and reactivity. Faraday Discuss. 162, 9–30 (2013).

    Article  CAS  Google Scholar 

  19. Luches, P. et al. Nature of Ag islands and nanoparticles on the CeO2(111) surface. J. Phys. Chem. C 116, 1122–1132 (2011).

    Article  Google Scholar 

  20. Kong, D. et al. Growth, structure, and stability of Ag on CeO2(111): Synchrotron radiation photoemission studies. J. Phys. Chem. C 115, 6715–6725 (2011).

    Article  CAS  Google Scholar 

  21. Freund, H. J., Nilius, N., Risse, T. & Schauermann, S. A fresh look at an old nano-technology: catalysis. Phys. Chem. Chem. Phys. 16, 8148–8167 (2014).

    Article  CAS  Google Scholar 

  22. Campbell, C. T. Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties. Surf. Sci. Rep. 27, 1–111 (1997).

    Article  CAS  Google Scholar 

  23. Wertheim, G. K., DiCenzo, S. B. & Youngquist, S. E. Unit charge on supported gold clusters in photoemission final state. Phys. Rev. Lett. 51, 2310–2313 (1983).

    Article  CAS  Google Scholar 

  24. Kaden, W. E. et al. Understanding surface core-level shifts using the Auger parameter: a study of Pd atoms adsorbed on ultrathin SiO2 films. Phys. Rev. B 89, 115436 (2014).

    Article  Google Scholar 

  25. Grant, A. W. & Campbell, C. T. Cesium adsorption on TiO2(110). Phys. Rev. B 55, 1844–1851 (1997).

    Article  CAS  Google Scholar 

  26. Nilius, N. et al. Electronic properties and charge state of gold monomers and chains adsorbed on alumina thin films on NiAl(110). Phys. Rev. B 81, 045422 (2010).

    Article  Google Scholar 

  27. Dvořák, F. et al. Adjusting morphology and surface reduction of CeO2(111) thin films on Cu(111). J. Phys. Chem. C 115, 7496–7503 (2011).

    Article  Google Scholar 

  28. Hu, S. et al. Ag nanoparticles on reducible CeO2(111) thin films: effect of thickness and stoichiometry of ceria. J. Phys. Chem. C 119, 3579–3588 (2015).

    Article  CAS  Google Scholar 

  29. Matsumoto, M. et al. Resonant photoemission study of CeO2 . Phys. Rev. B 50, 11340–11346 (1994).

    Article  CAS  Google Scholar 

  30. Pan, Y. et al. Titration of Ce3+ ions in the CeO2(111) surface by Au adatoms. Phys. Rev. Lett. 111, 206101 (2013).

    Article  Google Scholar 

  31. Šutara, F. et al. Epitaxial growth of continuous CeO2(111) ultra-thin films on Cu(111). Thin Solid Films 516, 6120–6124 (2008).

    Article  Google Scholar 

  32. Vari, G., Ovari, L., Kiss, J. & Konya, Z. LEIS and XPS investigation into the growth of cerium and cerium dioxide on Cu(111). Phys. Chem. Chem. Phys. 17, 5124–5132 (2015).

    Article  CAS  Google Scholar 

  33. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  34. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  35. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 48, 4978 (1993); erratum 46, 6671 (1992).

    Article  CAS  Google Scholar 

  36. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  37. Loschen, C., Carrasco, J., Neyman, K. M. & Illas, F. First-principles LDA+U and GGA+U study of cerium oxides: dependence on the effective U parameter. Phys. Rev. B 84, 199906 (2011); erratum 75, 035115 (2007).

    Article  Google Scholar 

  38. Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method. J. Phys. Condens. Matter 9, 767–808 (1997).

    Article  CAS  Google Scholar 

  39. Dudarev, S. L. et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the European Community (FP7-NMP.2012.1.1-1 project ChipCAT, Reference No. 310191), by the ‘Deutsche Forschungsgemeinschaft’ (DFG) within the Excellence Cluster ‘Engineering of Advanced Materials’ in the framework of the Excellence Initiative, by Spanish MINECO (grant CTQ2012-34969), by the Generalitat de Catalunya (grants 2014SGR97 and XRQTC), and by the Czech Science Foundation (grant 15-06759S). The authors also acknowledge the CERIC-ERIC Consortium for access to experimental facilities and financial support and the COST Action CM1104 for additional support. Computer resources and assistance were provided by the Red Española de Supercomputación. S.M.K. is grateful to Spanish Ministerio de Educación for a pre-doctoral FPU Grant AP2009-3379. The authors thank A. Kaftan for his contribution to the numerical analysis procedure for XPS.

Author information

Authors and Affiliations

Authors

Contributions

S.M.K. performed the density functional calculations. S.M.K., S.F. and K.M.N. analysed the calculated data and were involved in the preparation of the manuscript. K.M.N. supervised the theoretical work. Y.L., T.S. and N.T. performed the RPES experiments. Y.L., T.S., A.N. and J.L. were involved in the analysis of the experimental data and the preparation of the manuscript. J.L. and V.M. supervised the experimental work. A.T., V.S., F.D., V.J. and J.M. performed STM and XPS experiments.

Corresponding authors

Correspondence to Konstantin M. Neyman or Jörg Libuda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2369 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lykhach, Y., Kozlov, S., Skála, T. et al. Counting electrons on supported nanoparticles. Nature Mater 15, 284–288 (2016). https://doi.org/10.1038/nmat4500

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing