Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular design and control of fullerene-based bi-thermoelectric materials

Abstract

Molecular junctions are a versatile test bed for investigating nanoscale thermoelectricity1,2,3,4,5,6,7,8,9,10 and contribute to the design of new cost-effective environmentally friendly organic thermoelectric materials11. It was suggested that transport resonances associated with discrete molecular levels could play a key role in thermoelectric performance12,13, but no direct experimental evidence has been reported. Here we study single-molecule junctions of the endohedral fullerene Sc3N@C80 connected to gold electrodes using a scanning tunnelling microscope. We find that the magnitude and sign of the thermopower depend strongly on the orientation of the molecule and on applied pressure. Our calculations show that Sc3N inside the fullerene cage creates a sharp resonance near the Fermi level, whose energetic location, and hence the thermopower, can be tuned by applying pressure. These results reveal that Sc3N@C80 is a bi-thermoelectric material, exhibiting both positive and negative thermopower, and provide an unambiguous demonstration of the importance of transport resonances in molecular junctions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning tunnelling microscope images and tunnelling spectroscopy.
Figure 2: Thermopower and conductance simultaneous measurements.
Figure 3: Effect of pressure on Sc3N@C80 molecular junctions.
Figure 4: Effect of pressure on C60 molecular junctions and comparison with Sc3N@C80 junctions.

Similar content being viewed by others

References

  1. Baheti, K. et al. Probing the chemistry of molecular heterojunctions using thermoelectricity. Nano Lett. 8, 715–719 (2008).

    Article  CAS  Google Scholar 

  2. Yee, S. K., Malen, J. A., Majumdar, A. & Segalman, R. Thermoelectricity in fullerene metal heterojunctions. Nano Lett. 11, 4089–4094 (2011).

    Article  CAS  Google Scholar 

  3. Lee, S. K., Ohto, T., Yamada, R. & Tada, H. Thermopower of benzenedithiol and C60 molecular junctions with Ni and Au electrodes. Nano Lett. 14, 5276–5280 (2014).

    Article  CAS  Google Scholar 

  4. Malen, J. A. et al. Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions. Nano Lett. 9, 1164–1169 (2009).

    Article  CAS  Google Scholar 

  5. Tan, A. et al. Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions. J. Am. Chem. Soc. 133, 8838–8841 (2011).

    Article  CAS  Google Scholar 

  6. Balachandran, J., Reddy, P., Dunietz, B. D. & Gavini, V. End-group-induced charge transfer in molecular junctions: Effect on electronic-structure and thermopower. J. Phys. Chem. Lett. 3, 1962–1967 (2012).

    Article  CAS  Google Scholar 

  7. Widawsky, J. R. et al. Length-dependent thermopower of highly conducting Au–C bonded single molecule junctions. Nano Lett. 13, 2889–2894 (2013).

    Article  CAS  Google Scholar 

  8. Chang, W. B. et al. Controlling the thermoelectric properties of thiophene-derived single-molecule junctions. Chem. Mater. 26, 7229–7235 (2014).

    Article  CAS  Google Scholar 

  9. Evangeli, C. et al. Engineering the thermopower of C60 molecular junctions. Nano Lett. 13, 2141–2145 (2013).

    Article  CAS  Google Scholar 

  10. Kim, S., Jeong, W., Kim, K., Lee, W. & Reddy, P. Electrostatic control of thermoelectricity in molecular junctions. Nature Nanotech. 9, 881–885 (2014).

    Article  Google Scholar 

  11. Zhang, Q., Sun, Y., Xu, W. & Zhu, D. Organic thermoelectric materials: Emerging green energy materials converting heat to electricity directly and efficiently. Adv. Mater. 26, 6829–6851 (2014).

    Article  CAS  Google Scholar 

  12. Finch, C. M., García-Suárez, V. M. & Lambert, C. J. Giant thermopower and figure of merit in single-molecule devices. Phys. Rev. B 79, 033405 (2009).

    Article  Google Scholar 

  13. Bergfield, J. P., Solis, M. A. & Stafford, C. A. Giant thermoelectric effect from transmission supernodes. ACS Nano 4, 5314–5320 (2010).

    Article  CAS  Google Scholar 

  14. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Mater. 7, 105–113 (2008).

    Article  CAS  Google Scholar 

  15. Harman, T. C., Taylor, P. J., Walsh, M. P. & LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002).

    Article  CAS  Google Scholar 

  16. García-Suárez, V. M., Lambert, C. J., Manrique, D. Z. & Wandlowski, T. Redox control of thermopower and figure of merit in phase-coherent molecular wires. Nanotechnology 25, 205402 (2014).

    Article  Google Scholar 

  17. Stevenson, S. et al. Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401, 55–57 (1999).

    Article  CAS  Google Scholar 

  18. Nörenberg, C. et al. Self-assembly and electronic effects of Er3N@C80 and Sc3N@C80 on Au(111) and Ag/Si(111) surfaces. J. Phys. Conf. Ser. 100, 052080 (2008).

    Article  Google Scholar 

  19. Vacek, J., Vacek Chocholoušová, J., Stará, I. G., Starýa, I. & Dubi, Y. Mechanical tuning of conductance and thermopower in helicene molecular junctions. Nanoscale 7, 8793–8802 (2015).

    Article  CAS  Google Scholar 

  20. Paulsson, M. & Datta, S. Thermoelectric effect in molecular electronics. Phys. Rev. B 67, 241403(R) (2003).

    Article  Google Scholar 

  21. Agraït, N., Rubio, G. & Vieira, S. Plastic deformation of nanometer-scale gold connective necks. Phys. Rev. Lett. 74, 3995–3998 (1995).

    Article  Google Scholar 

  22. Rubio-Bollinger, G., Bahn, S. R., Agraït, N., Jacobsen, K. W. & Vieira, S. Mechanical propperties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett. 87, 026101 (2001).

    Article  Google Scholar 

  23. Ruoff, R. S. & Ruoff, A. L. The bulk modulus of C60 molecules and crystals: A molecular mechanics approach. Appl. Phys. Lett. 59, 1553–1555 (1991).

    Article  CAS  Google Scholar 

  24. Ferrer, J. et al. GOLLUM: A next-generation simulation tool for electron, thermal and spin transport. New J. Phys. 16, 093029 (2014).

    Article  Google Scholar 

  25. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 14, 2745–2779 (2002).

    Article  CAS  Google Scholar 

  26. Lambert, C. J. Basic concepts of quantum interference and electron transport in single-molecule electronics. Chem. Soc. Rev. 44, 875–888 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (No. 200021-147143) as well as by the European Commission (EC) FP7 ITN ‘MOLESCO’ project no. 606728, UK EPSRC (grant nos. EP/K001507/1, EP/J014753/1, EP/H035818/1), Spanish MINECO (grant nos. MAT2011-25046 and MAT2014-57915-R), Comunidad de Madrid NANOFRONTMAG-CM (S2013/MIT-2850), MAD2D-CM (S2013/MIT-3007) and the Iraqi Ministry of Higher Education, Tikrit University (SL-20). L.R.-G. acknowledges financial support from UAM, IMDEA-Nanoscience and Spanish MECD (grant no. FPU014/03368). A.K.I. acknowledges financial support from Tikrit University.

Author information

Authors and Affiliations

Authors

Contributions

L.R.-G. performed the experiments and analysed the experimental data. A.K.I. and I.G. carried out the theoretical calculations. K.P. purified and provided the endohedral molecules. C.E. contributed to the experiments and to the experimental set-up and G.R.-B. contributed to the experimental set-up. N.A. and C.J.L. conceived and supervised the experiment and wrote the manuscript with contributions from all the authors.

Corresponding authors

Correspondence to Nicolás Agraït or Colin J. Lambert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rincón-García, L., Ismael, A., Evangeli, C. et al. Molecular design and control of fullerene-based bi-thermoelectric materials. Nature Mater 15, 289–293 (2016). https://doi.org/10.1038/nmat4487

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4487

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing