Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment

Abstract

The therapeutic potential of miRNA (miR) in cancer is limited by the lack of efficient delivery vehicles. Here, we show that a self-assembled dual-colour RNA-triple-helix structure comprising two miRNAs—a miR mimic (tumour suppressor miRNA) and an antagomiR (oncomiR inhibitor)—provides outstanding capability to synergistically abrogate tumours. Conjugation of RNA triple helices to dendrimers allows the formation of stable triplex nanoparticles, which form an RNA-triple-helix adhesive scaffold upon interaction with dextran aldehyde, the latter able to chemically interact and adhere to natural tissue amines in the tumour. We also show that the self-assembled RNA-triple-helix conjugates remain functional in vitro and in vivo, and that they lead to nearly 90% levels of tumour shrinkage two weeks post-gel implantation in a triple-negative breast cancer mouse model. Our findings suggest that the RNA-triple-helix hydrogels can be used as an efficient anticancer platform to locally modulate the expression of endogenous miRs in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembled RNA-triple-helix hydrogel nanoconjugates and scaffold for microRNA delivery.
Figure 2: RNA-triple-helix assembly/stability assays and in vitro cellular uptake of RNA–dendrimer nanoparticles into cancer cells.
Figure 3: Cellular trafficking and uptake mechanism of naked dendrimer and RNA-triple-helix–dendrimer conjugates.
Figure 4: Proliferation, migration and survival of cancer cells as a function of RNA-triple-helix nanoparticles treatment.
Figure 5: In vivo miRNA modulation and tumour therapy via RNA-triple-helix hydrogel scaffolds.

Similar content being viewed by others

References

  1. Kasinski, A. L. & Slack, F. J. MicroRNAs en route to the clinic: Progress in validating and targeting microRNAs for cancer therapy. Nature Rev. Cancer 11, 849–864 (2011).

    Article  CAS  Google Scholar 

  2. Li, Z. & Rana, T. M. Therapeutic targeting of microRNAs: Current status and future challenges. Nature Rev. Drug Discov. 13, 622–638 (2014).

    Article  CAS  Google Scholar 

  3. Yin, H. et al. Non-viral vectors for gene-based therapy. Nature Rev. Genet. 15, 541–555 (2014).

    Article  CAS  Google Scholar 

  4. Conde, J., Edelman, E. R. & Artzi, N. Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: The jack-of-all-trades in cancer nanotheranostics? Adv. Drug Deliv. Rev. 81, 169–183 (2015).

    Article  CAS  Google Scholar 

  5. Chen, Y. C., Gao, D. Y. & Huang, L. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Adv. Drug Deliv. Rev. 81, 128–141 (2015).

    Article  CAS  Google Scholar 

  6. Yin, P. T., Shah, B. P. & Lee, K. B. Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells. Small 10, 4106–4112 (2014).

    CAS  Google Scholar 

  7. Hao, L. L., Patel, P. C., Alhasan, A. H., Giljohann, D. A. & Mirkin, C. A. Nucleic acid–gold nanoparticle conjugates as mimics of microRNA. Small 7, 3158–3162 (2011).

    Article  CAS  Google Scholar 

  8. Endo-Takahashi, Y. et al. Systemic delivery of miR-126 by miRNA-loaded bubble liposomes for the treatment of hindlimb ischemia. Sci. Rep. 4, 3883 (2014).

    Article  Google Scholar 

  9. Chen, Y. C., Zhu, X. D., Zhang, X. J., Liu, B. & Huang, L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol. Ther. 18, 1650–1656 (2010).

    Article  CAS  Google Scholar 

  10. Anand, S. et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nature Med. 16, 909–914 (2010).

    Article  CAS  Google Scholar 

  11. Wu, Y. et al. MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Mol. Pharm. 8, 1381–1389 (2011).

    Article  CAS  Google Scholar 

  12. Mittal, A., Chitkara, D., Behrman, S. W. & Mahato, R. I. Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials 35, 7077–7087 (2014).

    Article  CAS  Google Scholar 

  13. Cheng, C. J. et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518, 107–110 (2015).

    Article  CAS  Google Scholar 

  14. Shu, D. et al. Systemic delivery of Anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano 9, 9731–9740 (2015).

    Article  CAS  Google Scholar 

  15. McKiernan, P. J., Cunningham, O., Greene, C. M. & Cryan, S. A. Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology. Int. J. Nanomed. 8, 3907–3915 (2013).

    Google Scholar 

  16. Cheng, C. J. & Saltzman, W. M. Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. Mol. Pharm. 9, 1481–1488 (2012).

    Article  CAS  Google Scholar 

  17. Guo, P. X. The emerging field of RNA nanotechnology. Nature Nanotech. 5, 833–842 (2010).

    Article  CAS  Google Scholar 

  18. Lee, J. B., Hong, J., Bonner, D. K., Poon, Z. & Hammond, P. T. Self-assembled RNA interference microsponges for efficient siRNA delivery. Nature Mater. 11, 316–322 (2012).

    Article  CAS  Google Scholar 

  19. Mok, H., Lee, S. H., Park, J. W. & Park, T. G. Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. Nature Mater. 9, 272–278 (2010).

    Article  CAS  Google Scholar 

  20. Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature Nanotech. 7, 389–393 (2012).

    Article  CAS  Google Scholar 

  21. Haque, F. et al. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today 7, 245–257 (2012).

    Article  CAS  Google Scholar 

  22. Shu, D., Shu, Y., Haque, F., Abdelmawla, S. & Guo, P. X. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nature Nanotech. 6, 658–667 (2011).

    Article  CAS  Google Scholar 

  23. Jendis, J., Strack, B. & Moelling, K. Inhibition of replication of drug-resistant HIV type 1 isolates by polypurine tract-specific oligodeoxynucleotide TFO A. AIDS Res. Hum. Retroviruses 14, 999–1005 (1998).

    Article  CAS  Google Scholar 

  24. Moelling, K., Abels, S., Jendis, J., Matskevich, A. & Heinrich, J. Silencing of HIV by hairpin-loop-structured DNA oligonucleotide. FEBS Lett. 580, 3545–3550 (2006).

    Article  CAS  Google Scholar 

  25. Yoon, K., Hobbs, C. A., Walter, A. E. & Turner, D. H. Effect of a 5′-phosphate on the stability of triple helix. Nucleic Acids Res. 21, 601–606 (1993).

    Article  CAS  Google Scholar 

  26. Chan, P. P. & Glazer, P. M. Triplex DNA: Fundamentals, advances, and potential applications for gene therapy. J. Mol. Med. 75, 267–282 (1997).

    Article  CAS  Google Scholar 

  27. Holland, J. A. & Hoffman, D. W. Structural features and stability of an RNA triple helix in solution. Nucleic Acids Res. 24, 2841–2848 (1996).

    Article  CAS  Google Scholar 

  28. Duca, M., Vekhoff, P., Oussedik, K., Halby, L. & Arimondo, P. B. The triple helix: 50 years later, the outcome. Nucleic Acids Res. 36, 5123–5138 (2008).

    Article  CAS  Google Scholar 

  29. Foulkes, W. D., Smith, I. E. & Reis, J. S. Triple-negative breast cancer. N. Engl. J. Med. 363, 1938–1948 (2010).

    Article  CAS  Google Scholar 

  30. Nassirpour, R., Mehta, P. P., Baxi, S. M. & Yin, M. J. miR-221 promotes tumorigenesis in human triple negative breast cancer cells. PLoS ONE 8, e62170 (2013).

    Article  CAS  Google Scholar 

  31. Piovan, C. et al. Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer. Mol. Oncol. 6, 458–472 (2012).

    Article  CAS  Google Scholar 

  32. Conde, J., Oliva, N. & Artzi, N. Implantable hydrogel embedded dark-gold nanoswitch as a theranostic probe to sense and overcome cancer multidrug resistance. Proc. Natl Acad. Sci. USA 112, E1278–E1287 (2015).

    Article  CAS  Google Scholar 

  33. Oliva, N. et al. Regulation of dendrimer/dextran material performance by altered tissue microenvironment in inflammation and neoplasia. Sci. Transl. Med. 7, 272ra211 (2015).

    Article  Google Scholar 

  34. Schroeder, A., Levins, C. G., Cortez, C., Langer, R. & Anderson, D. G. Lipid-based nanotherapeutics for siRNA delivery. J. Int. Med. 267, 9–21 (2010).

    Article  CAS  Google Scholar 

  35. Francois, J. C. et al. Sequence-specific recognition and cleavage of duplex DNA via triple-helix formation by oligonucleotides covalently linked to a phenanthroline copper chelate. Proc. Natl Acad. Sci. USA 86, 9702–9706 (1989).

    Article  CAS  Google Scholar 

  36. Chiou, C. C., Chen, S. W., Luo, J. D. & Chien, Y. T. Monitoring triplex DNA formation with fluorescence resonance energy transfer between a fluorophore-labeled probe and intercalating dyes. Anal. Biochem. 416, 1–7 (2011).

    Article  CAS  Google Scholar 

  37. Wan, C. H., Cui, M., Song, F. R., Liu, Z. Q. & Liu, S. Y. Evaluation of effects of bivalent cations on the formation of purine-rich triple-helix DNA by ESI-FT-MS. J. Am. Soc. Mass Spectrom. 20, 1281–1286 (2009).

    Article  CAS  Google Scholar 

  38. Carlson, R. D., Olins, A. L. & Olins, D. E. Urea denaturation of chromatin periodic structure. Biochemistry 14, 3122–3125 (1975).

    Article  CAS  Google Scholar 

  39. Ha, M. & Kim, V. N. Regulation of microRNA biogenesis. Nature Rev. Mol. Cell Biol. 15, 509–524 (2014).

    Article  CAS  Google Scholar 

  40. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  CAS  Google Scholar 

  41. Conde, J. et al. 15 years on siRNA delivery: Beyond the State-of-the-Art on inorganic nanoparticles for RNAi Therapeutics. Nano Today http://dx.doi.org/10.1016/j.nantod.2015.06.008 (in the press).

  42. Kitchens, K. M., Kolhatkar, I. B., Swaan, P. W. & Ghandehari, H. Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Ceco-2 cells. Mol. Pharm. 5, 364–369 (2008).

    Article  CAS  Google Scholar 

  43. Jones, A. T. Macropinocytosis: Searching for an endocytic identity and role in the uptake of cell penetrating peptides. J. Cell Mol. Med. 11, 670–684 (2007).

    Article  CAS  Google Scholar 

  44. Linares, J. et al. Endocytic mechanisms of graphene oxide nanosheets in osteoblasts, hepatocytes and macrophages. ACS Appl. Mater. Interfaces 6, 13697–13706 (2014).

    Article  CAS  Google Scholar 

  45. Iversen, T. G., Skotland, T. & Sandvig, K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 6, 176–185 (2011).

    Article  CAS  Google Scholar 

  46. Segovia, N. et al. Hydrogel doped with nanoparticles for local sustained release of siRNA in breast cancer. Adv. Healthc. Mater. 4, 271–280 (2015).

    Article  CAS  Google Scholar 

  47. Sledge, G. W. et al. Past, present, and future challenges in breast cancer treatment. J. Clin. Oncol. 32, 1979–1986 (2014).

    Article  CAS  Google Scholar 

  48. Sparano, J. A. et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. N. Engl. J. Med. 358, 1663–1671 (2008).

    Article  CAS  Google Scholar 

  49. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    Article  CAS  Google Scholar 

  50. Oliva, N. et al. Natural tissue microenvironmental conditions modulate adhesive material performance. Langmuir 28, 15402–15409 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.C. acknowledges a Marie Curie International Outgoing Fellowship and Funding (FP7-PEOPLE-2013-IOF, Project 626386). We thank D. Fulop for helpful and fruitful discussions. We thank the Swanson Biotechnology Center at the Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology (MIT) for assistance with animal experiments and facilities, especially the microscopy, flow cytometry, and histology cores. We also acknowledge that all qPCR experiments done in the KI Genomics Core/MIT BioMicro Center are funded by the NIH and supported in part by the Koch Institute Support Grant P30-CA14051 from the National Cancer Institute and by the National Institute of Environmental Health Sciences of the NIH under award P30-ES002109. We thank D. S. Yun for cryo-TEM assistance at the Peterson Nanotechnology Materials Core Facility. We thank the Department of Comparative Medicine at MIT, especially J. Haupt. We thank G. Paradis for FACS assistance with Cancer Center Support (FACS core) Grant P30-CA14051 from the National Cancer Institute. We thank P. Boisvert and Y. Zhang for technical assistance in SEM at the MIT Center for Materials Science and Engineering (CMSE). These SEM studies made use of the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation under award number DMR-1419807.

Author information

Authors and Affiliations

Authors

Contributions

J.C. and N.A. conceived the project and designed the experiments. J.C., N.O., H.S.S. and M.A. performed the experiments, collected and analysed the data. J.C. and N.A. co-wrote the manuscript. All authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to João Conde or Natalie Artzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5573 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conde, J., Oliva, N., Atilano, M. et al. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nature Mater 15, 353–363 (2016). https://doi.org/10.1038/nmat4497

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4497

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing