Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels

Abstract

Bulk matrix stiffness has emerged as a key mechanical cue in stem cell differentiation. Here, we show that the commitment and differentiation of human mesenchymal stem cells encapsulated in physiologically soft (0.2–0.4 kPa), fully synthetic polyisocyanopeptide-based three-dimensional (3D) matrices that mimic the stiffness of adult stem cell niches and show biopolymer-like stress stiffening, can be readily switched from adipogenesis to osteogenesis by changing only the onset of stress stiffening. This mechanical behaviour can be tuned by simply altering the material’s polymer length whilst maintaining stiffness and ligand density. Our findings introduce stress stiffening as an important parameter that governs stem cell fate in a 3D microenvironment, and reveal a correlation between the onset of stiffening and the expression of the microtubule-associated protein DCAMKL1, thus implicating DCAMKL1 in a stress-stiffening-mediated, mechanotransduction pathway that involves microtubule dynamics in stem cell osteogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential modulus, K’, as a function of stress, σ, for intracellular and extracellular filamentous biopolymer gels that show stress stiffening.
Figure 2: Synthesis of polymers of different chain lengths and characterization of polymer hydrogels.
Figure 3: Effect of stress stiffening on hMSC commitment.
Figure 4: Stress-stiffening-mediated stem cell differentiation involves the microtubule-associated protein DCAMKL1.

Similar content being viewed by others

References

  1. Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    CAS  Google Scholar 

  2. Discher, D. E., Janmey, P. & Wang, Y.-L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    CAS  Google Scholar 

  3. Baker, B. M. & Chen, C. S. Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).

    CAS  Google Scholar 

  4. Eyckmans, J., Boudou, T., Yu, X. & Chen, C. S. A hitchhiker’s guide to mechanobiology. Dev. Cell 21, 35–47 (2011).

    CAS  Google Scholar 

  5. Das, R. K. & Zouani, O. F. A review of the effects of the cell environment physicochemical nanoarchitecture on stem cell commitment. Biomaterials 35, 5278–5293 (2014).

    CAS  Google Scholar 

  6. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nature Rev. Mol. Cell Biol. 7, 265–275 (2006).

    CAS  Google Scholar 

  7. Chaudhuri, O. et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nature Mater. 13, 970–978 (2014).

    CAS  Google Scholar 

  8. Wen, J. H. et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nature Mater. 13, 979–987 (2014).

    CAS  Google Scholar 

  9. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    CAS  Google Scholar 

  10. McNamara, L. E. et al. The role of microtopography in cellular mechanotransduction. Biomaterials 33, 2835–2847 (2012).

    CAS  Google Scholar 

  11. Nikukar, H. et al. Osteogenesis of mesenchymal stem cells by nanoscale mechanotransduction. ACS Nano 7, 2758–2767 (2013).

    CAS  Google Scholar 

  12. Zouani, O. F. et al. Altered nanofeature size dictates stem cell differentiation. J. Cell Sci. 125, 1217–1224 (2012).

    CAS  Google Scholar 

  13. Zouani, O. F., Kalisky, J., Ibarboure, E. & Durrieu, M. C. Effect of BMP-2 from matrices of different stiffnesses for the modulation of stem cell fate. Biomaterials 34, 2157–2166 (2013).

    CAS  Google Scholar 

  14. Das, R. K., Zouani, O. F., Labrugère, C., Oda, R. & Durrieu, M.-C. Influence of nanohelical shape and periodicity on stem cell fate. ACS Nano 7, 3351–3361 (2013).

    CAS  Google Scholar 

  15. Cheng, Z. A., Zouani, O. F., Glinel, K., Jonas, A. M. & Durrieu, M. C. Bioactive chemical nanopatterns impact human mesenchymal stem cell fate. Nano Lett. 13, 3923–3929 (2013).

    CAS  Google Scholar 

  16. Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature Methods 7, 733–736 (2010).

    CAS  Google Scholar 

  17. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  18. Ingber, D. E. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91, 877–887 (2002).

    CAS  Google Scholar 

  19. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater. 9, 518–526 (2010).

    CAS  Google Scholar 

  20. Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature Mater. 12, 458–465 (2013).

    CAS  Google Scholar 

  21. Houseman, B. T. & Mrksich, M. The microenvironment of immobilized Arg-Gly-Asp peptides is an important determinant of cell adhesion. Biomaterials 22, 943–955 (2001).

    CAS  Google Scholar 

  22. Keselowsky, B. G., Collard, D. M. & García, A. J. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl Acad. Sci. USA 102, 5953–5957 (2005).

    CAS  Google Scholar 

  23. Wen, J. H. et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nature Mater. 13, 979–987 (2014).

    CAS  Google Scholar 

  24. Van Buul, A. M. et al. Stiffness versus architecture of single helical polyisocyanopeptides. Chem. Sci. 4, 2357–2363 (2013).

    CAS  Google Scholar 

  25. Kouwer, P. H. J. et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 493, 651–655 (2013).

    CAS  Google Scholar 

  26. Winer, J. P., Oake, S. & Janmey, P. a. Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS ONE 4, e6382 (2009).

    Google Scholar 

  27. Storm, C., Pastore, J. & MacKintosh, F. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    CAS  Google Scholar 

  28. Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nature Mater. 11, 642–649 (2012).

    CAS  Google Scholar 

  29. Wilson, M. J., Liliensiek, S. J., Murphy, C. J., Murphy, W. L. & Nealey, P. F. Hydrogels with well-defined peptide-hydrogel spacing and concentration: Impact on epithelial cell behavior. Soft Matter 8, 390–398 (2012).

    CAS  Google Scholar 

  30. Broedersz, C. P. et al. Measurement of nonlinear rheology of cross-linked biopolymer gels. Soft Matter 6, 4120–4127 (2010).

    CAS  Google Scholar 

  31. Jaspers, M. et al. Ultra-responsive soft matter from strain-stiffening hydrogels. Nature Commun. 5, 5808 (2014).

    Google Scholar 

  32. Benoit, D. S. W., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater. 7, 816–823 (2008).

    CAS  Google Scholar 

  33. McMurray, R. J. et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nature Mater. 10, 637–644 (2011).

    CAS  Google Scholar 

  34. Zou, W. et al. The microtubule-associated protein DCAMKL1 regulates osteoblast function via repression of Runx2. J. Exp. Med. 210, 1793–1806 (2013).

    CAS  Google Scholar 

  35. Kolodney, M. S. & Elson, E. L. Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain. Proc. Natl Acad. Sci. USA 92, 10252–10256 (1995).

    CAS  Google Scholar 

  36. Kabiri, M. et al. 3D mesenchymal stem/stromal cell osteogenesis and autocrine signalling. Biochem. Biophys. Res. Commun. 419, 142–147 (2012).

    CAS  Google Scholar 

  37. Lund, A. W., Bush, J. A., Plopper, G. E. & Stegemann, J. P. Osteogenic differentiation of mesenchymal stem cells in defined protein beads. J. Biomed. Mater. Res. B. 87, 213–221 (2008).

    Google Scholar 

  38. Westhrin, M. et al. Osteogenic differentiation of human mesenchymal stem cells in mineralized alginate matrices. PLoS ONE 10, e0120374 (2015).

    Google Scholar 

  39. Yamaguchi, Y., Ohno, J., Sato, A., Kido, H. & Fukushima, T. Mesenchymal stem cell spheroids exhibit enhanced in-vitro and in-vivo osteoregenerative potential. BMC Biotechnol. 14, 105 (2014).

    Google Scholar 

  40. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. & Karsenty, G. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 89, 747–754 (1997).

    CAS  Google Scholar 

  41. Xiao, Z.-S., Simpson, L. G. & Quarles, L. D. IRES-dependent translational control of Cbfa1/Runx2 expression. J. Cell. Biochem. 88, 493–505 (2003).

    CAS  Google Scholar 

  42. Galindo, M. et al. The bone-specific expression of Runx2 oscillates during the cell cycle to support a G1-related antiproliferative function in osteoblasts. J. Biol. Chem. 280, 20274–20285 (2005).

    CAS  Google Scholar 

  43. Sudhakar, S., Li, Y., Katz, M. S. & Elango, N. Translational regulation is a control point in RUNX2/Cbfa1 gene expression. Biochem. Biophys. Res. Commun. 289, 616–622 (2001).

    CAS  Google Scholar 

  44. Chiellini, C. et al. Stathmin-like 2, a developmentally-associated neuronal marker, is expressed and modulated during osteogenesis of human mesenchymal stem cells. Biochem. Biophys. Res. Commun. 374, 64–68 (2008).

    CAS  Google Scholar 

  45. Zhao, M. et al. Inhibition of microtubule assembly in osteoblasts stimulates bone morphogenetic protein 2 expression and bone formation through transcription factor Gli2. Mol. Cell. Biol. 29, 1291–1305 (2009).

    CAS  Google Scholar 

  46. Bechstedt, S. et al. A doublecortin containing microtubule-associated protein is implicated in mechanotransduction in Drosophila sensory cilia. Nature Commun. 1, 1–11 (2010).

    CAS  Google Scholar 

  47. Na, S. et al. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl Acad. Sci. USA 105, 6626–6631 (2008).

    CAS  Google Scholar 

  48. Terenna, C. R. et al. Physical mechanisms redirecting cell polarity and cell shape in fission yeast. Curr. Biol. 18, 1748–1753 (2008).

    CAS  Google Scholar 

  49. Balaban, N. Q. et al. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001).

    CAS  Google Scholar 

  50. Mandal, S. et al. Therapeutic nanoworms: Towards novel synthetic dendritic cells for immunotherapy. Chem. Sci. 4, 4168–4174 (2013).

    CAS  Google Scholar 

  51. Singer, V. L., Jones, L. J., Yue, S. T. & Haugland, R. P. Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal. Biochem. 249, 228–238 (1997).

    CAS  Google Scholar 

  52. Lai, L.-J. & Ho, T.-C. Pigment epithelial-derived factor inhibits c-FLIP expression and assists ciglitazone-induced apoptosis in hepatocellular carcinoma. Anticancer Res. 31, 1173–1180 (2011).

    CAS  Google Scholar 

  53. Zouani, O. F., Chollet, C., Guillotin, B. & Durrieu, M.-C. Differentiation of pre-osteoblast cells on poly(ethylene terephthalate) grafted with RGD and/or BMPs mimetic peptides. Biomaterials 31, 8245–8253 (2010).

    CAS  Google Scholar 

  54. Zouani, O. F., Rami, L., Lei, Y. & Durrieu, M.-C. Insights into the osteoblast precursor differentiation towards mature osteoblasts induced by continuous BMP-2 signaling. Biol. Open 2, 872–881 (2013).

    CAS  Google Scholar 

  55. Lei, Y., Zouani, O. F., Rémy, M., Ayela, C. & Durrieu, M.-C. Geometrical microfeature cues for directing tubulogenesis of endothelial cells. PLoS ONE 7, e41163 (2012).

    CAS  Google Scholar 

  56. Lei, Y., Zouani, O. F., Rami, L., Chanseau, C. & Durrieu, M.-C. Modulation of lumen formation by microgeometrical bioactive cues and migration mode of actin machinery. Small 9, 1086–1095 (2013).

    CAS  Google Scholar 

  57. Lin, P. T., Gleeson, J. G., Corbo, J. C., Flanagan, L. & Walsh, C. A. DCAMKL1 encodes a protein kinase with homology to doublecortin that regulates microtubule polymerization. J. Neurosci. 20, 9152–9161 (2000).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NWO grant 728.011.102 (R.K.D.), Gravitation grant Functional Molecular System (A.E.R.), NanoNext grant 3D.12 (R.H.), Histide AG and Histide Lab. We acknowledge P. Kouwer for discussions on stress stiffening. We also acknowledge K. Blank for useful discussions on biofunctionalization. We also thank R. Nolte for his interest in the work and useful general suggestions.

Author information

Authors and Affiliations

Authors

Contributions

R.K.D., O.F.Z. and A.E.R. conceived and initiated the project. R.K.D. and R.H. synthesized the polymers and did the rheological characterization. V.G. and O.F.Z. performed the stem cell experiments. R.H. performed the AFM experiments. O.F.Z., R.K.D., V.G., R.H. and A.E.R. analysed the data. R.K.D., V.G., A.E.R. and O.F.Z. wrote the manuscript. A.E.R. and O.F.Z. supervised the project.

Corresponding authors

Correspondence to Rajat K. Das, Omar F. Zouani or Alan E. Rowan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1918 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Gocheva, V., Hammink, R. et al. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nature Mater 15, 318–325 (2016). https://doi.org/10.1038/nmat4483

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4483

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing