Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A small-molecule dye for NIR-II imaging

Abstract

Fluorescent imaging of biological systems in the second near-infrared window (NIR-II) can probe tissue at centimetre depths and achieve micrometre-scale resolution at depths of millimetres. Unfortunately, all current NIR-II fluorophores are excreted slowly and are largely retained within the reticuloendothelial system, making clinical translation nearly impossible. Here, we report a rapidly excreted NIR-II fluorophore (90% excreted through the kidneys within 24 h) based on a synthetic 970-Da organic molecule (CH1055). The fluorophore outperformed indocyanine green (ICG)—a clinically approved NIR-I dye—in resolving mouse lymphatic vasculature and sentinel lymphatic mapping near a tumour. High levels of uptake of PEGylated-CH1055 dye were observed in brain tumours in mice, suggesting that the dye was detected at a depth of 4 mm. The CH1055 dye also allowed targeted molecular imaging of tumours in vivo when conjugated with anti-EGFR Affibody. Moreover, a superior tumour-to-background signal ratio allowed precise image-guided tumour-removal surgery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical characterization of CH1055-PEG.
Figure 2: The first NIR-II dye demonstrating renal excretion.
Figure 3: Superior lymphatic NIR-II imaging with CH10555-PEG to NIR-I imaging with ICG.
Figure 4: Through-skull non-invasive imaging of brain tumour at 4 mm depth with CH1055-PEG.
Figure 5: Molecular imaging of tumour with CH1055-anti-EGFR affibody and imaging guided tumour surgery.

Similar content being viewed by others

References

  1. Kamolz, L. P., Andel, H., Auer, T., Meissl, G. & Frey, M. Evaluation of skin perfusion by use of indocyanine green video angiography: Rational design and planning of trauma surgery. J. Trauma 61, 635–641 (2006).

    Article  Google Scholar 

  2. Orth, D. H., Patz, A. & Flower, R. W. Potential clinical applications of indocyanine green choroidal angiography—preliminary-report. Eye Ear Nose Throat Mon. 55, 4–11 (1976).

    Google Scholar 

  3. Choi, H. S. et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nature Biotechnol. 31, 148–153 (2013).

    Article  CAS  Google Scholar 

  4. Gioux, S., Choi, H. S. & Frangioni, J. V. Image-guided surgery using invisible near-infrared light: Fundamentals of clinical translation. Mol. Imaging 9, 237–255 (2010).

    Article  CAS  Google Scholar 

  5. Hong, G. et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nature Med. 18, 1841–1846 (2012).

    Article  CAS  Google Scholar 

  6. Liu, Z. et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotech. 2, 47–52 (2007).

    Article  CAS  Google Scholar 

  7. Vahrmeijer, A. L., Hutteman, M., van der Vorst, J. R., van de Velde, C. J. & Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nature Rev. Clin. Oncol. 10, 507–518 (2013).

    Article  CAS  Google Scholar 

  8. Hong, G. et al. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. Int. Ed. 124, 9956–9959 (2012).

    Article  Google Scholar 

  9. Hong, G. et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nature Commun. 5, 4206 (2014).

    Article  CAS  Google Scholar 

  10. Diao, S. et al. Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging. J. Am. Chem. Soc. 134, 16971–16974 (2012).

    Article  CAS  Google Scholar 

  11. Choi, H. S. et al. Renal clearance of quantum dots. Nature Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  Google Scholar 

  12. Liu, Z. et al. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl Acad. Sci. USA 105, 1410–1415 (2008).

    Article  CAS  Google Scholar 

  13. Antaris, A. L. et al. Ultra-low doses of chirality sorted (6,5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy. ACS Nano 7, 3644–3652 (2013).

    Article  CAS  Google Scholar 

  14. Welsher, K. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature Nanotech. 4, 773–780 (2009).

    Article  CAS  Google Scholar 

  15. Welsher, K., Sherlock, S. P. & Dai, H. J. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl Acad. Sci. USA 108, 8943–8948 (2011).

    Article  CAS  Google Scholar 

  16. Fitzpatrick, J. A. J. et al. Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett. 9, 2736–2741 (2009).

    Article  CAS  Google Scholar 

  17. Yang, S. T. et al. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol. Lett. 181, 182–189 (2008).

    Article  CAS  Google Scholar 

  18. Xie, R., Chen, K., Chen, X. & Peng, X. InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: Bright, narrow-band, non-cadmium containing, and biocompatible. Nano Res. 1, 457–464 (2008).

    Article  CAS  Google Scholar 

  19. Hu, F. et al. Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res. 8, 1637–1647 (2015).

    Article  CAS  Google Scholar 

  20. Tao, Z. M. et al. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew. Chem. Int. Ed. 52, 13002–13006 (2013).

    Article  CAS  Google Scholar 

  21. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnol. 22, 93–97 (2004).

    Article  CAS  Google Scholar 

  22. Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control Release 65, 271–284 (2000).

    Article  CAS  Google Scholar 

  23. Wishart, G. C., Loh, S. W., Jones, L. & Benson, J. R. A feasibility study (ICG-10) of indocyanine green (ICG) fluorescence mapping for sentinel lymph node detection in early breast cancer. Eur. J. Surg. Oncol. 38, 651–656 (2012).

    Article  CAS  Google Scholar 

  24. Gao, J. H. et al. Affibody-based nanoprobes for HER2-expressing cell and tumor imaging. Biomaterials 32, 2141–2148 (2011).

    Article  CAS  Google Scholar 

  25. Qian, G. et al. Band gap tunable, donor–acceptor–donor charge-transfer heteroquinoid-based chromophores: Near infrared photoluminescence and electroluminescence. Chem. Mater. 20, 6208–6216 (2008).

    Article  CAS  Google Scholar 

  26. Hong, G. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nature Photon. 8, 723–730 (2014).

    Article  CAS  Google Scholar 

  27. Murphy, J. E. et al. PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 128, 3241–3247 (2006).

    Article  CAS  Google Scholar 

  28. Williams, A. T. R., Winfield, S. A. & Miller, J. N. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108, 1067–1071 (1983).

    Article  CAS  Google Scholar 

  29. Ju, S. Y., Kopcha, W. P. & Papadimitrakopoulos, F. Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science 323, 1319–1323 (2009).

    Article  CAS  Google Scholar 

  30. Fox, M. E., Szoka, F. C. & Frechet, J. M. J. Soluble polymer carriers for the treatment of cancer: The importance of molecular architecture. Acc. Chem. Res. 42, 1141–1151 (2009).

    Article  CAS  Google Scholar 

  31. Troyan, S. L. et al. The FLARE intraoperative near-infrared fluorescence imaging system: A first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann. Surg. Oncol. 16, 2943–2952 (2009).

    Article  Google Scholar 

  32. Chi, C. W. et al. Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: From preclinical evaluation to clinical validation. PLoS ONE 8, e83927 (2013).

    Article  Google Scholar 

  33. Tanaka, E., Choi, H. S., Fujii, H., Bawendi, M. G. & Frangioni, J. V. Image-guided oncologic surgery using invisible light: Completed pre-clinical development for sentinel lymph node mapping. Ann. Surg. Oncol. 13, 1671–1681 (2006).

    Article  Google Scholar 

  34. Diao, S. et al. Biological imaging without autofluorescence in the second near-infrared window. Nano Res. 8, 3027–3034 (2015).

    Article  CAS  Google Scholar 

  35. Zheng, M. B. et al. Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. ACS Appl. Mater. Interfaces 6, 6709–6716 (2014).

    Article  CAS  Google Scholar 

  36. Gurfinkel, M. et al. Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study. Photochem. Photobiol. 72, 94–102 (2000).

    Article  CAS  Google Scholar 

  37. Zimmermann, M., Zouhair, A., Azria, D. & Ozsahin, M. The epidermal growth factor receptor (EGFR) in head and neck cancer: Its role and treatment implications. Radiat. Oncol. 1, 11 (2006).

    Article  Google Scholar 

  38. Miao, Z., Ren, G., Liu, H. G., Jiang, L. & Cheng, Z. Cy5.5-labeled Affibody molecule for near-infrared fluorescent optical imaging of epidermal growth factor receptor positive tumors. J. Biomed. Opt. 15, 36007 (2010).

    Article  Google Scholar 

  39. Qi, S. B. et al. Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors. Bioconjug. Chem. 23, 1149–1156 (2012).

    Article  CAS  Google Scholar 

  40. Ekblad, T. et al. Development and preclinical characterisation of Tc-99m-labelled Affibody molecules with reduced renal uptake. Eur. J. Nucl. Med. Mol. Imaging 35, 2245–2255 (2008).

    Article  CAS  Google Scholar 

  41. Tolmachev, V. et al. Affibody molecules for epidermal growth factor receptor targeting in vivo: Aspects of dimerization and labeling chemistry. J. Nucl. Med. 50, 274–283 (2009).

    Article  Google Scholar 

  42. Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nature Rev. Drug Discov. 2, 214–221 (2003).

    Article  CAS  Google Scholar 

  43. He, X. X., Gao, J. H., Gambhir, S. S. & Cheng, Z. Near-infrared fluorescent nanoprobes for cancer molecular imaging: Status and challenges. Trends Mol. Med. 16, 574–583 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Office of Science (BER), US Department of Energy (DE-SC0008397) (Z.C.), NCI Cancer Center Nanotechnology Excellence Grant (CCNE-TR) U54 CA119367, the Calbrain Program, a Neurotechnology Program of California (H.D.), CA151459, the National Natural Science Foundation of China 81573383, 81373254 and 21390402, NSFHP (2014CFB704) (X.Hong), International S&T Cooperation Program of China (2015DFA30440, 2014DFB30020) (X.Hong), the National Science and Technology Major Project of the Ministry of Science and Technology of China No. 2012ZX10004801-003-011 (X.Hong), Key Project of Chinese Ministry of Education No. 313040 (X.Hong), Academic Award for Excellent PhD Candidates funded by Ministry Of Education of China (no. 5052012306001), the Fundamental Research Funds for the Central Universities (C.Q., H.C., X.Hong) and Innovation Seed Fund of Wuhan University School of Medicine (X.Hong).

Author information

Authors and Affiliations

Authors

Contributions

H.D., Z.C. and X.Hong conceived and designed the study, supervised the project, and wrote the manuscript. A.L.A. and H.C. designed the study, performed all the experiments, and wrote the manuscript. C.Q., B.Z. and Y.S. contributed to synthesis of the compounds. K.C., X.Z., O.K.Y., G.H., S.D. and Z.R.A. helped with optical imaging. Z.D. and X.Hu contributed to the study design and preparation of the manuscript.

Corresponding authors

Correspondence to Xuechuan Hong, Zhen Cheng or Hongjie Dai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antaris, A., Chen, H., Cheng, K. et al. A small-molecule dye for NIR-II imaging. Nature Mater 15, 235–242 (2016). https://doi.org/10.1038/nmat4476

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4476

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research