Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals

Abstract

Oriented attachment of PbSe nanocubes can result in the formation of two-dimensional (2D) superstructures with long-range nanoscale and atomic order1,2. This questions the applicability of classic models in which the superlattice grows by first forming a nucleus, followed by sequential irreversible attachment of nanocrystals3,4, as one misaligned attachment would disrupt the 2D order beyond repair. Here, we demonstrate the formation mechanism of 2D PbSe superstructures with square geometry by using in situ grazing-incidence X-ray scattering (small angle and wide angle), ex situ electron microscopy, and Monte Carlo simulations. We observed nanocrystal adsorption at the liquid/gas interface, followed by the formation of a hexagonal nanocrystal monolayer. The hexagonal geometry transforms gradually through a pseudo-hexagonal phase into a phase with square order, driven by attractive interactions between the {100} planes perpendicular to the liquid substrate, which maximize facet-to-facet overlap. The nanocrystals then attach atomically via a necking process, resulting in 2D square superlattices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The different stages of the self-assembly process towards an oriented attached PbSe NC superlattice.
Figure 2: Quantitative analysis of the GISAXS and GIWAXS data.
Figure 3: HAADF-STEM and atom counting reconstruction on the attached NCs.
Figure 4: Schematic mechanism of the consecutive phase transitions during the reactive self-assembly of the PbSe NCs.
Figure 5: Monte Carlo simulations on the truncated nanocubes confined to a 2D plane.

Similar content being viewed by others

References

  1. Evers, W. H. et al. Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment. Nano Lett. 13, 2317–2323 (2013).

    Article  CAS  Google Scholar 

  2. Boneschanscher, M. P. et al. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 344, 1377–1380 (2014).

    Article  CAS  Google Scholar 

  3. Pound, G. M. & LaMer, V. K. Kinetics of crystalline nucleus formation in supercooled liquid Tin 1,2. J. Am. Chem. Soc. 74, 2323–2332 (1952).

    Article  CAS  Google Scholar 

  4. LaMer, V. K. & Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950).

    Article  CAS  Google Scholar 

  5. Banfield, J. F. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751–754 (2000).

    Article  CAS  Google Scholar 

  6. Pacholski, C., Kornowski, A. & Weller, H. Self-assembly of ZnO: from nanodots to nanorods. Angew. Chem. Int. Ed. Engl. 41, 1188–1191 (2002).

    Article  CAS  Google Scholar 

  7. Li, D. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).

    Article  CAS  Google Scholar 

  8. Schliehe, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 329, 550–553 (2010).

    Article  CAS  Google Scholar 

  9. Cho, K.-S., Talapin, D. V., Gaschler, W. & Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127, 7140–7147 (2005).

    Article  CAS  Google Scholar 

  10. Kalesaki, E., Evers, W. H., Allan, G., Vanmaekelbergh, D. & Delerue, C. Electronic structure of atomically coherent square semiconductor superlattices with dimensionality below two. Phys. Rev. B 88, 115431 (2013).

    Article  Google Scholar 

  11. Kalesaki, E. et al. Dirac cones, topological edge states, and nontrivial flat bands in two-dimensional semiconductors with a honeycomb nanogeometry. Phys. Rev. X 4, 011010 (2014).

    Google Scholar 

  12. Beugeling, W. et al. Topological states in multi-orbital HgTe honeycomb lattices. Nat. Commun. 6, 6316 (2015).

    Article  CAS  Google Scholar 

  13. Evers, W. H. et al. High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds. Nat. Commun. 6, 8195 (2015).

    Article  CAS  Google Scholar 

  14. Whitham, K. et al. Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 15, 557–563 (2016).

    Article  CAS  Google Scholar 

  15. Pietra, F. et al. Semiconductor nanorod self-assembly at the liquid/air interface studied by in situ GISAXS and ex situ TEM. Nano Lett. 12, 5515–5523 (2012).

    Article  CAS  Google Scholar 

  16. Bian, K. et al. Shape-anisotropy driven symmetry transformations in nanocrystal superlattice polymorphs. ACS Nano 5, 2815–2823 (2011).

    Article  CAS  Google Scholar 

  17. Li, R., Bian, K., Hanrath, T., Bassett, W. A. & Wang, Z. Decoding the superlattice and interface structure of truncate PbS nanocrystal-assembled supercrystal and associated interaction forces. J. Am. Chem. Soc. 136, 12047–12055 (2014).

    Article  CAS  Google Scholar 

  18. Choi, J. J. et al. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage. J. Am. Chem. Soc. 133, 3131–3138 (2011).

    Article  CAS  Google Scholar 

  19. Choi, J. J., Bian, K., Baumgardner, W. J., Smilgies, D.-M. & Hanrath, T. Interface-induced nucleation, orientational alignment and symmetry transformations in nanocube superlattices. Nano Lett. 12, 4791–4798 (2012).

    Article  CAS  Google Scholar 

  20. Weidman, M. C., Smilgies, D.-M. & Tisdale, W. A. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering. Nat. Mater. 15, 775–781 (2016).

    Article  CAS  Google Scholar 

  21. Evers, W. H. et al. Entropy-driven formation of binary semiconductor-nanocrystal superlattices. Nano Lett. 10, 4235–4241 (2010).

    Article  CAS  Google Scholar 

  22. Bodnarchuk, M. I., Kovalenko, M. V., Heiss, W. & Talapin, D. V. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor. J. Am. Chem. Soc. 132, 11967–11977 (2010).

    Article  CAS  Google Scholar 

  23. Hanrath, T., Choi, J. J. & Smilgies, D.-M. Structure/processing relationships of highly ordered lead salt nanocrystal superlattices. ACS Nano 3, 2975–2988 (2009).

    Article  CAS  Google Scholar 

  24. Narayanan, S., Wang, J. & Lin, X.-M. Dynamical self-assembly of nanocrystal superlattices during colloidal droplet evaporation by in situ small angle x-ray scattering. Phys. Rev. Lett. 93, 135503 (2004).

    Article  Google Scholar 

  25. Simon, P. et al. Interconnection of nanoparticles within 2D superlattices of PbS/oleic acid thin films. Adv. Mater. 26, 3042–3049 (2014).

    Article  CAS  Google Scholar 

  26. Van Aert, S., Batenburg, K. J., Rossell, M. D., Erni, R. & Van Tendeloo, G. Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374–377 (2011).

    Article  CAS  Google Scholar 

  27. Van Aert, S. et al. Procedure to count atoms with trustworthy single-atom sensitivity. Phys. Rev. B 87, 064107 (2013).

    Article  Google Scholar 

  28. Jones, L., MacArthur, K. E., Fauske, V. T., van Helvoort, A. T. J. & Nellist, P. D. Rapid estimation of catalyst nanoparticle morphology and atomic-coordination by high-resolution Z-contrast electron microscopy. Nano Lett. 14, 6336–6341 (2014).

    Article  CAS  Google Scholar 

  29. Bals, S. et al. Atomic scale dynamics of ultrasmall germanium clusters. Nat. Commun. 3, 897 (2012).

    Article  CAS  Google Scholar 

  30. Woo, J. Y. et al. Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100). J. Am. Chem. Soc. 136, 8883–8886 (2014).

    Article  CAS  Google Scholar 

  31. Thapar, V. et al. Entropic self-assembly of freely rotating polyhedral particles confined to a flat interface. Soft Matter 11, 1481–1491 (2015).

    Article  CAS  Google Scholar 

  32. Sandeep, C. S. S. et al. Epitaxially connected PbSe quantum-dot films: controlled neck formation and optoelectronic properties. ACS Nano 8, 11499–11511 (2014).

    Article  CAS  Google Scholar 

  33. Baumgardner, W. J., Whitham, K. & Hanrath, T. Confined-but-connected quantum solids via controlled ligand displacement. Nano Lett. 13, 3225–3231 (2013).

    Article  CAS  Google Scholar 

  34. Zhang, H., De Yoreo, J. J. & Banfield, J. F. A unified description of attachment-based crystal growth. ACS Nano 8, 6526–6530 (2014).

    Article  CAS  Google Scholar 

  35. Zhang, H. & Banfield, J. F. Energy calculations predict nanoparticle attachment orientations and asymmetric crystal formation. J. Phys. Chem. Lett. 3, 2882–2886 (2012).

    Article  CAS  Google Scholar 

  36. Steckel, J. S., Yen, B. K. H., Oertel, D. C. & Bawendi, M. G. On the mechanism of lead chalcogenide nanocrystal formation. J. Am. Chem. Soc. 128, 13032–13033 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is part of the programme ‘Designing Dirac Carriers in semiconductor honeycomb superlattices (DDC13),’ which is supported by the Foundation for Fundamental Research on Matter (FOM), which is part of the Dutch Research Council (NWO). J.J.G. acknowledges funding from the Debye and ESRF Graduate Programs. The authors gratefully acknowledge funding from the Research Foundation Flanders (G.036915 G.037413 and funding of postdoctoral grants to B.G. and A.d.B). S.B. acknowledges the European Research Council, ERC grant No 335078—Colouratom. The authors gratefully acknowledge I. Swart and M. van Huis for fruitful discussions. We acknowledge funding from NWO-CW TOPPUNT ‘Superficial Superstructures’. The X-ray scattering measurements were performed at the ID10 beamline at ESRF under proposal numbers SC-4125 and SC-3786. The authors thank G. L. Destri and F. Zontone for their support during the experiments.

Author information

Authors and Affiliations

Authors

Contributions

J.J.G., C.v.O., F.T.R., J.H. and J.L.P. performed the in situ GISAXS/WAXS experiments under supervision of O.K. and A.V.P. J.J.G. and C.v.O. analysed the GISAXS/WAXS data. The TEM data were collected by C.v.O., W.H.E., J.J.G. and J.L.P. HAADF-STEM and atomic reconstructions were performed by B.G., A.d.B., S.v.A. and S.B. A.P.G. and M.D. performed the Monte Carlo simulations. J.J.G. and C.v.O. wrote the manuscript under supervision of O.K., A.V.P., M.D., S.B., L.D.A.S. and D.V. D.V. supervised the whole project. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Jaco J. Geuchies or Daniel Vanmaekelbergh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8705 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geuchies, J., van Overbeek, C., Evers, W. et al. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. Nature Mater 15, 1248–1254 (2016). https://doi.org/10.1038/nmat4746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing