Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films

Abstract

Hydrogen, the smallest and the lightest atomic element, is reversibly incorporated into interstitial sites in vanadium dioxide (VO2), a correlated oxide with a 3d1 electronic configuration, and induces electronic phase modulation. It is widely reported that low hydrogen concentrations stabilize the metallic phase, but the understanding of hydrogen in the high doping regime is limited. Here, we demonstrate that as many as two hydrogen atoms can be incorporated into each VO2 unit cell, and that hydrogen is reversibly absorbed into, and released from, VO2 without destroying its lattice framework. This hydrogenation process allows us to elucidate electronic phase modulation of vanadium oxyhydride, demonstrating two-step insulator (VO2)–metal (HxVO2)–insulator (HVO2) phase modulation during inter-integer d-band filling. Our finding suggests the possibility of reversible and dynamic control of topotactic phase modulation in VO2 and opens up the potential application in proton-based Mottronics and novel hydrogen storage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Low-temperature hydrogenation of VO2.
Figure 2: Structural phase modulation by hydrogenation.
Figure 3: Dynamic resistivity modulation of HxVO2 by hydrogenation.
Figure 4: X-ray photoemission spectroscopy and NEXAFS of pristine VO2 and fully hydrogenated insulating HVO2.
Figure 5: Calculated structural and electronic modulation in HVO2.

Similar content being viewed by others

References

  1. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    Article  CAS  Google Scholar 

  2. Ngai, J. H., Walker, F. J. & Ahn, C. H. Correlated oxide physics and electronics. Annu. Rev. Mater. Res. 44, 1–17 (2014).

    Article  CAS  Google Scholar 

  3. Yang, Z., Ko, C. & Ramanathan, S. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41, 337–367 (2011).

    Article  CAS  Google Scholar 

  4. Jeen, H. et al. Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge. Nature Mater. 12, 1057–1063 (2013).

    Article  CAS  Google Scholar 

  5. Inoue, S. et al. Anisotropic oxygen diffusion at low temperature in perovskite-structure iron oxides. Nature Chem. 2, 213–217 (2010).

    Article  CAS  Google Scholar 

  6. Xie, Y. et al. Control of functional responses via reversible oxygen loss in La1−xSrxFeO3−δ films. Adv. Mater. 26, 1434–1438 (2013).

    Article  Google Scholar 

  7. Zhang, K. H. L. et al. Reversible nano-structuring of SrCrO3−δ through oxidation and reduction at low temperature. Nature Commun. 5, 4669 (2014).

    Article  CAS  Google Scholar 

  8. Morin, F. J. Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 3, 34–36 (1959).

    Article  CAS  Google Scholar 

  9. Goodenough, J. B. The two components of the crystallographic transition in VO2 . J. Solid State Chem. 3, 490–500 (1971).

    Article  CAS  Google Scholar 

  10. Jeong, J. et al. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 1402–1405 (2013).

    Article  CAS  Google Scholar 

  11. Gu, Q., Falk, A., Wu, J., Ouyang, L. & Park, H. Current-driven phase oscillation and domain-wall propagation in WxV1−xO2 nanobeams. Nano Lett. 7, 363–366 (2007).

    Article  CAS  Google Scholar 

  12. Tan, X. et al. Unraveling metal-insulator transition mechanism of VO2 triggered by tungsten doping. Sci. Rep. 2, 466 (2012).

    Article  Google Scholar 

  13. Van de Walle, C. G. Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012–1015 (2000).

    Article  CAS  Google Scholar 

  14. Janotti, A. & Van de Walle, C. G. Hydrogen multicentre bonds. Nature Mater. 6, 44–47 (2007).

    Article  CAS  Google Scholar 

  15. Lin, J. et al. Hydrogen diffusion and stabilization in single-crystal VO2 micro/nanobeams by direct atomic hydrogenation. Nano Lett. 14, 5445–5451 (2014).

    Article  CAS  Google Scholar 

  16. Wei, J., Ji, H., Guo, W., Nevidomskyy, A. H. & Natelson, D. Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams. Nature Nanotech. 7, 357–362 (2012).

    Article  CAS  Google Scholar 

  17. Warnick, K. H., Wang, B. & Pantelides, S. T. Hydrogen dynamics and metallic phase stabilization in VO2 . Appl. Phys. Lett. 104, 101913–101915 (2014).

    Article  Google Scholar 

  18. Andreev, V. N., Kapralova, V. M. & Klimov, V. A. Effect of hydrogenation on the metal-semiconductor phase transition in vanadium dioxide thin films. Phys. Solid State 49, 2318–2322 (2007).

    Article  CAS  Google Scholar 

  19. Wu, C. Z. et al. Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect. J. Am. Chem. Soc. 133, 13798–13801 (2011).

    Article  CAS  Google Scholar 

  20. Bermudez, V. M., Williams, R. T., Long, J. P., Reed, R. K. & Klein, P. H. Photoemission study of hydrogen adsorption on vanadium dioxide near the semiconductor-metal phase transition. Phys. Rev. B 45, 9266–9271 (1992).

    Article  CAS  Google Scholar 

  21. Filinchuk, Y. et al. In situ diffraction study of catalytic hydrogenation of VO2: stable phases and origins of metallicity. J. Am. Chem. Soc. 136, 8100–8109 (2014).

    Article  CAS  Google Scholar 

  22. Zhou, Y., Ramanathan, S. & Shi, J. Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping. Nature Commun. 5, 4860 (2014).

    Article  Google Scholar 

  23. Chippindale, A. M., Dickens, P. G. & Powell, A. V. Synthesis, characterization, and inelastic neutron scattering study of hydrogen insertion compounds of VO2(rutile). J. Solid State Chem. 93, 526–533 (2003).

    Article  Google Scholar 

  24. Chen, J. K. et al. Self-limited kinetics of electron doping in correlated oxides. Appl. Phys. Lett. 107, 031905 (2015).

    Article  Google Scholar 

  25. Ishikawa, R. et al. Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nature Mater. 10, 278–281 (2011).

    Article  CAS  Google Scholar 

  26. Wang, G. M. et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011).

    Article  CAS  Google Scholar 

  27. Shannon, R. D. & Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25, 925–946 (1968).

    Article  Google Scholar 

  28. Bishop, S. R. et al. Chemical expansion: implications for electrochemical energy storage and conversion devices. Annu. Rev. Mater. Res. 44, 205–239 (2014).

    Article  CAS  Google Scholar 

  29. Zhao, Y. et al. Hydrogen-doping stabilized metallic VO2 (R) thin films and their application to suppress Fabry-Perot resonances in the terahertz regime. Appl. Phys. Lett. 104, 241901 (2014).

    Article  Google Scholar 

  30. Corr, S. A. et al. Controlled reduction of vanadium oxide nanoscrolls: crystal structure, morphology, and electrical properties. Chem. Mater. 20, 6396–6404 (2008).

    Article  CAS  Google Scholar 

  31. Park, J. H. et al. Measurement of a solid-state triple point at the metal-insulator transition in VO2 . Nature 500, 431–434 (2013).

    Article  CAS  Google Scholar 

  32. Silversmit, G., Depla, D., Poelman, H., Marin, G. B. & DeGryse, R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenom. 135, 167–175 (2004).

    Article  CAS  Google Scholar 

  33. Xu, Y., Zheng, L. & Xie, Y. From synthetic montroseite VOOH to topochemical paramontroseite VO2 and their applications in aqueous lithium ion batteries. Dalton Trans. 39, 10729–10710 (2010).

    Article  CAS  Google Scholar 

  34. Whittaker, L., Jaye, C., Fu, Z., Fischer, D. A. & Banerjee, S. Depressed phase transition in solution-grown VO2 nanostructures. J. Am. Chem. Soc. 131, 8884–8894 (2009).

    Article  CAS  Google Scholar 

  35. Sakai, E. et al. Competition between instabilities of Peierls transition and Mott transition in W-doped VO2 thin films. Phys. Rev. B 84, 195132–195135 (2011).

    Article  Google Scholar 

  36. Eyert, V. VO2: a novel view from band theory. Phys. Rev. Lett. 107, 016401 (2011).

    Article  CAS  Google Scholar 

  37. Shibuya, K., Kawasaki, M. & Tokura, Y. Metal-insulator transition in epitaxial V1−xWxO2 (0 ≤ x ≤ 0.33) thin films. Appl. Phys. Lett. 96, 022102–022104 (2010).

    Article  Google Scholar 

  38. Van Overmeere, Q., Kerman, K. & Ramanathan, S. Energy storage in ultrathin solid oxide fuel cells. Nano Lett. 12, 3756–3760 (2012).

    Article  CAS  Google Scholar 

  39. Katase, T., Endo, K., Tohei, T., Ikuhara, Y. & Ohta, H. Room-temperature-protonation-driven on-demand metal-insulator conversion of a transition metal oxide. Adv. Electron. Mater. 1, 1500063 (2015).

    Article  Google Scholar 

  40. Sim, J. S., Zhou, Y. & Ramanathan, S. Suspended sub-50 nm vanadium dioxide membrane transistors: fabrication and ionic liquid gating studies. Nanoscale 4, 7056–7062 (2012).

    Article  CAS  Google Scholar 

  41. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8210 (2003).

    Article  CAS  Google Scholar 

  42. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106–224106 (2006).

    Article  Google Scholar 

  43. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. B. Song for RBS and ERD measurement, Y. C. Park for STEM, and J. H. Lee and S. Lee for helpful discussion. H.Y. and J.S. acknowledge support for this work by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2014R1A1A1035950), and the IT R&D programme of MOTIE/KEIT (10045226). M.C. acknowledges support for this work by the Basic Science Research Program through the NRF funded by the Ministry of Science, ICT & Future Planning (2015R1C1A1A02037595). M.C., T.-W. L. and S.-Y.C. were supported by the Global Frontier R&D Program (2013-073298) on Center for Hybrid Interface Materials (HIM) funded by the Ministry of Science, ICT & Future Planning (2013M3A6B1078872). In addition, this study was partially supported by the Fundamental Research Program of the Korean Institute of Materials Science (KIMS) and Brain Korea 21 PLUS project (Center for Creative Industrial Materials).

Author information

Authors and Affiliations

Authors

Contributions

M.C. and J.S. conceived the idea and designed the study. H.Y. performed the film growth, X-ray diffraction and synchrotron measurement under the supervision of J.S. H.Y. and H.K. carried out the in situ electrical measurement under the guidance of J.S. and J.-K.K. M.C. performed the electronic structure calculations. T.-W.L. and S.-Y.C. characterized the samples with scanning transmission electron microscopy. J.S. directed the research. H.Y., M.C. and J.S. wrote the manuscript and all authors commented on it.

Corresponding author

Correspondence to Junwoo Son.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 10624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, H., Choi, M., Lim, TW. et al. Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films. Nature Mater 15, 1113–1119 (2016). https://doi.org/10.1038/nmat4692

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4692

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing