Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes

Abstract

Metal oxide protection layers for photoanodes may enable the development of large-scale solar fuel and solar chemical synthesis, but the poor photovoltages often reported so far will severely limit their performance. Here we report a novel observation of photovoltage loss associated with a charge extraction barrier imposed by the protection layer, and, by eliminating it, achieve photovoltages as high as 630 mV, the maximum reported so far for water-splitting silicon photoanodes. The loss mechanism is systematically probed in metal–insulator–semiconductor Schottky junction cells compared to buried junction p+n cells, revealing the need to maintain a characteristic hole density at the semiconductor/insulator interface. A leaky-capacitor model related to the dielectric properties of the protective oxide explains this loss, achieving excellent agreement with the data. From these findings, we formulate design principles for simultaneous optimization of built-in field, interface quality, and hole extraction to maximize the photovoltage of oxide-protected water-splitting anodes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three junction types showing the extraction barrier imposed by the protection layer illustrated with silicon water-oxidation photoanodes.
Figure 2: Photovoltage loss in ALD-TiO2-protected nSi MIS anodes.
Figure 3: Photovoltage loss observed with increasing thickness of the SiO2 interlayer with and without TiO2.
Figure 4: Simulated band diagrams reveal differences between Type I Schottky junction structures and Type 2 p+n buried junction structures.
Figure 5: Charge extraction photovoltage loss eliminated and record photovoltages achieved with Type 2 p+n buried junction cells.

Similar content being viewed by others

References

  1. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    CAS  Google Scholar 

  2. Heller, A. Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells. Acc. Chem. Res. 14, 154–162 (1981).

    CAS  Google Scholar 

  3. Bard, A. J. & Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

    CAS  Google Scholar 

  4. Turner, J. A. A realizable renewable energy future. Science 285, 687–689 (1999).

    CAS  Google Scholar 

  5. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Google Scholar 

  6. Lewis, N. S. Light work with water. Nature 414, 589–590 (2001).

    CAS  Google Scholar 

  7. Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  Google Scholar 

  8. Bassett, R. K. To the Digital Age: Research Labs, Startup Companies, and the Rise of MOS Technology (John Hopkins Univ. Press, 2007).

    Google Scholar 

  9. Chen, Y. W. et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nature Mater. 10, 539–544 (2011).

    CAS  Google Scholar 

  10. Scheuermann, A. G., Prange, J. D., Gunji, M., Chidsey, C. E. D. & McIntyre, P. C. Effects of catalyst material and atomic layer deposited TiO2 oxide thickness on the water oxidation performance of metal–insulator–silicon anodes. Energy Environ. Sci. 6, 2487–2496 (2013).

    CAS  Google Scholar 

  11. Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    CAS  Google Scholar 

  12. Lichterman, M. F. et al. Stabilization of n-cadmium telluride photoanodes for water oxidation to O2(g) in aqueous alkaline electrolytes using amorphous TiO2 films formed by atomic-layer deposition. Energy Environ. Sci. 7, 3334–3337 (2014).

    CAS  Google Scholar 

  13. McDowell, M. T. et al. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings. J. Phys. Chem. C 118, 19618–19624 (2014).

    CAS  Google Scholar 

  14. Green, M. A. Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes. IEEE Trans. Electron Devices ED-31, 671–678 (1984).

    CAS  Google Scholar 

  15. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 45). Prog. Photovolt. 23, 1–9 (2015).

    Google Scholar 

  16. Hu, S. et al. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984–2993 (2013).

    CAS  Google Scholar 

  17. Kenney, M. J. et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836–840 (2013).

    CAS  Google Scholar 

  18. Mei, B. et al. Protection of p+nSi photoanodes by sputter-deposited Ir/IrOx thin films. J. Phys. Chem. Lett. 5, 1948–1952 (2014).

    CAS  Google Scholar 

  19. Mei, B. et al. Iron-treated NiO as a highly transparent p-type protection layer for efficient Si-based photoanodes. J. Phys. Chem. Lett. 5, 3456–3461 (2014).

    CAS  Google Scholar 

  20. Green, M. A. & Godfrey, R. B. MIS solar cell—General theory and new experimental results for silicon. Appl. Phys. Lett. 29, 610–612 (1976).

    CAS  Google Scholar 

  21. Green, M. A. Effects of pinholes, oxide traps, and surface states on MIS solar cells. Appl. Phys. Lett. 33, 178–180 (1978).

    CAS  Google Scholar 

  22. Godfrey, R. B. & Green, M. A. 655 mV open-circuit voltage, 17.6% efficient silicon MIS solar cells. Appl. Phys. Lett. 34, 790–793 (1979).

    CAS  Google Scholar 

  23. Singh, R., Green, M. A. & Rajkanan, K. Review of conductor–insulator–semiconductor (CIS) solar cells. Solar Cells 3, 95–148 (1981).

    CAS  Google Scholar 

  24. Green, M. A. & Blakers, A. W. Advantages of metal–insulator–semiconductor structures for silicon solar cells. Solar Cells 8, 3–16 (1983).

    CAS  Google Scholar 

  25. Grauvogl, M. & Hezel, R. The truncated-pyramid MIS inversion-layer solar cell: A comprehensive analysis. Prog. Photovolt. Res. Appl. 6, 15–24 (1998).

    CAS  Google Scholar 

  26. McDowell, M. T. et al. The influence of structure and processing on the behavior of TiO2 protective layers for stabilization of n-Si/TiO2/Ni photoanodes for water oxidation. ACS Appl. Mater. Interfaces 7, 15189–15199 (2015).

    CAS  Google Scholar 

  27. Mei, B. et al. Crystalline TiO2: A generic and effective electron-conducting protection layer for photoanodes and -cathodes. J. Phys. Chem. C. 119, 15019–15027 (2015).

    CAS  Google Scholar 

  28. Levy, D., Ponpon, J. P., Grob, A., Grob, J. J. & Stuck, R. Rapid thermal annealing and titanium silicide formation. Appl. Phys. A 38, 23–29 (1985).

    Google Scholar 

  29. Mann, R. W., Clevenger, L. A., Agnello, P. D. & White, F. R. Silicides and local interconnections for high-performance VLSI applications. IBM J. Res. Dev. 39, 403–417 (1995).

    CAS  Google Scholar 

  30. Sekine, K., Saito, Y., Hirayama, M. & Ohmi, T. Silicon nitride film growth for advanced gate dielectric at low temperature employing high-density and low-energy ion bombardment. J. Vac. Sci. Technol. A 17, 3129–3133 (1999).

    CAS  Google Scholar 

  31. Sugawara, T. et al. Characterization of ultra thin oxynitride formed by radical nitridation with slot plane antenna plasma. Jpn. J. Appl. Phys. 44, 1232–1236 (2005).

    CAS  Google Scholar 

  32. Scheuermann, A. G., Lu, D. Q., Ito, T., Chidsey, C. E. D. & McIntyre, P. C. The effect of SPA-SiO2 tunnel oxide thickness for metal–insulator–silicon photoelectrochemical cells. ECS Trans. 64, 265–276 (2014).

    CAS  Google Scholar 

  33. Alamo, J. A. & Swanson, R. M. Modelling of minority-carrier transport in heavily doped silicon emitters. Solid-State Electron. 30, 1127–1136 (1987).

    Google Scholar 

  34. Tyagi, M. S. & Van Overstraeten, R. Minority carrier recombination in heavily-doped silicon. Solid-State Electron. 26, 577–597 (1983).

    CAS  Google Scholar 

  35. Chen, L. et al. p-type transparent conducting oxide/n-type semiconductor heterojunctions for efficient and stable solar water oxidation. J. Am. Chem. Soc. 137, 9595–9603 (2015).

    CAS  Google Scholar 

  36. Sze, S. M. Semiconductor Devices: Physics and Technology (John Wiley, 2008).

    Google Scholar 

  37. Swaminathan, S. & McIntyre, P. C. Titania/alumina bilayer gate dielectrics for Ge MOS devices: Frequency- and temperature-dependent electrical characteristics. Electrochem. Solid-State Lett. 13, G79–G82 (2010).

    CAS  Google Scholar 

  38. Bard, A. J., Bocarsly, A. B., Fan, F. R. F., Walton, E. G. & Wrighton, M. S. The concept of Fermi level pinning at semiconductor/liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J. Am. Chem. Soc. 102, 3671–3677 (1980).

    CAS  Google Scholar 

  39. Scheuermann, A. G., Lawrence, J. P., Gunji, M., Chidsey, C. E. D. & McIntyre, P. C. ALD-TiO2 preparation and characterization for metal–insulator–silicon photoelectrochemical applications. ECS Trans. 58, 75–86 (2013).

    Google Scholar 

  40. Fuke, N. et al. Influence of TiO2/electrode interface on electron transport properties in back contact dye-sensitized solar cells. Solar Energy Mater. Solar Cells 93, 720–724 (2009).

    CAS  Google Scholar 

  41. Pattantyus-Abraham, A. G. et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374–3380 (2010).

    CAS  Google Scholar 

  42. Devore, J. R. Refractive index of rutile and sphalerite. J. Opt. Soc. Am. 41, 416–417 (1951).

    CAS  Google Scholar 

  43. Haynes, W. M., Bruno, T. J. & Lide, D. R. (eds) CRC Handbook of Chemistry and Physics 12–124 95th edn (CRC Press, 2014).

    Google Scholar 

Download references

Acknowledgements

We thank T. Carver for metal e-beam evaporation and all the members of the RENEW collaboration—in addition to the authors: M. Pemble, A. Mills, I. Povey, J. Kegel, K. Cherkaoui, S. Monaghan and D. Hazafy–as well as A. Talin from Sandia for their insightful discussions. T. Burke is also acknowledged for insightful discussions on solar cell physics. A.G.S. would like to thank R. Long, E. Newton, P. F. Satterthwaite, D. Q. Lu and O. Hendricks from the McIntyre and Chidsey groups for their support and insights throughout this work. We also thank K. Tang, L. Zhang and M. Kitano for their help in building and maintaining the ALD chambers. This work was partially supported by the Stanford Global Climate and Energy Project and National Science Foundation programme CBET-1336844. A.G.S. graciously acknowledges financial support from a Stanford Graduate Fellowship and a National Science Foundation Graduate Fellowship. The authors from Tyndall National Institute acknowledge the financial support of Science Foundation (SFI) under the US-Ireland R&D Partnership Programme—Grant Number SFI/13/US/I2543. The Tyndall silicon fabrication facility is acknowledged for the p+n silicon junctions used in this study.

Author information

Authors and Affiliations

Authors

Contributions

A.G.S. and J.P.L. prepared all samples and performed all measurements for the initial TiO2 photovoltage series first observing the photovoltage loss. A.G.S. prepared all samples and performed all measurements for the SiO2 photovoltage series, capacitance voltage measurements, and buried junction p+nSi experiments. A.W. prepared all p+n buried junction substrates and performed all physical characterization of these junctions. K.W.K. performed Sentaurus modelling for light absorption in Type I and Type II cells, as well as simulating band diagrams. T.I. performed the SPA plasma oxidation for the experiments varying SiO2 thickness. A.G.S. and K.W.K. maintained the ALD chamber for TiO2 depositions and A.G.S. qualified and performed the runs. A.G.S., C.E.D.C. P.K.H. and P.C.M. designed the experiments and developed the solid-state capacitor model to explain the loss. All authors helped in the preparation of the manuscript.

Corresponding author

Correspondence to Paul C. McIntyre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2087 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheuermann, A., Lawrence, J., Kemp, K. et al. Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes. Nature Mater 15, 99–105 (2016). https://doi.org/10.1038/nmat4451

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing