Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fast diffusion of water nanodroplets on graphene

Abstract

Diffusion across surfaces generally involves motion on a vibrating but otherwise stationary substrate. Here, using molecular dynamics, we show that a layered material such as graphene opens up a new mechanism for surface diffusion whereby adsorbates are carried by propagating ripples in a motion similar to surfing. For water nanodroplets, we demonstrate that the mechanism leads to exceedingly fast diffusion that is 2–3 orders of magnitude faster than the self-diffusion of water molecules in liquid water. We also reveal the underlying principles that regulate this new mechanism for diffusion and show how it also applies to adsorbates other than water, thus opening up the prospect of achieving fast and controllable motion of adsorbates across material surfaces more generally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Water droplet diffusion on graphene.
Figure 2: Diffusion coefficients D for different sized water nanodroplets and comparison between water nanodroplets and other adsorbates.
Figure 3: Connection between diffusion and the amplitude of the ripples of graphene and the adsorbate/substrate interaction strength.

Similar content being viewed by others

References

  1. Jardine, A. P., Hedgeland, H., Alexandrowicz, G., Allison, W. & Ellis, J. Helium-3 spin-echo: Principles and application to dynamics at surfaces. Prog. Surf. Sci. 84, 323–379 (2009).

    Article  CAS  Google Scholar 

  2. Antczak, G. & Ehrlich, G. Jump processes in surface diffusion. Surf. Sci. Rep. 62, 39–61 (2007).

    Article  CAS  Google Scholar 

  3. Ala-Nissila, T., Ferrando, R. & Ying, S. C. Collective and single particle diffusion on surfaces. Adv. Phys. 51, 949–1078 (2002).

    Article  CAS  Google Scholar 

  4. Kellogg, G. L. & Feibelman, P. J. Surface self-diffusion on Pt(001) by an atomic exchange mechanism. Phys. Rev. Lett. 64, 3143–3146 (1990).

    Article  CAS  Google Scholar 

  5. Knudsen, J. et al. Clusters binding to the graphene moire on Ir(111): X-ray photoemission compared to density functional calculations. Phys. Rev. B 85, 035407 (2012).

    Article  Google Scholar 

  6. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  7. Wintterlin, J. & Bocquet, M.-L. Graphene on metal surfaces. Surf. Sci. 603, 1841–1852 (2009).

    Article  CAS  Google Scholar 

  8. Feng, X. F., Maier, S. & Salmeron, M. Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc. 134, 5662–5668 (2012).

    Article  CAS  Google Scholar 

  9. Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–194 (2010).

    Article  CAS  Google Scholar 

  10. Li, Z. et al. Effect of airborne contaminants on the wettability of supported graphene and graphite. Nature Mater. 12, 925–931 (2013).

    Article  CAS  Google Scholar 

  11. Cicero, G., Grossman, J. C., Schwegler, E., Gygi, F. & Galli, G. Water confined in nanotubes and between graphene sheets: A first principle study. J. Am. Chem. Soc. 130, 1871–1878 (2008).

    Article  CAS  Google Scholar 

  12. Yin, J. et al. Generating electricity by moving a droplet of ionic liquid along graphene. Nature Nanotech. 9, 378–383 (2014).

    Article  CAS  Google Scholar 

  13. Cheng, M. et al. A route toward digital manipulation of water nanodroplets on surfaces. ACS Nano 8, 3955–3960 (2014).

    Article  CAS  Google Scholar 

  14. Algara-Siller, G. et al. Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015).

    Article  CAS  Google Scholar 

  15. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    Article  CAS  Google Scholar 

  16. Ma, J. et al. Adsorption and diffusion of water on graphene from first principles. Phys. Rev. B 84, 033402 (2011).

    Article  Google Scholar 

  17. Mitsui, T., Rose, M. K., Fomin, E., Ogletree, D. F. & Salmeron, M. Water diffusion and clustering on Pd(111). Science 297, 1850–1852 (2002).

    Article  CAS  Google Scholar 

  18. Ranea, V. A. et al. Water dimer diffusion on Pd{111} assisted by an H-bond donor-acceptor tunneling exchange. Phys. Rev. Lett. 92, 136104 (2004).

    Article  CAS  Google Scholar 

  19. Carrasco, J., Hodgson, A. & Michaelides, A. A molecular perspective of water at metal interfaces. Nature Mater. 11, 667–674 (2012).

    Article  CAS  Google Scholar 

  20. Smit, B. & Maesen, T. L. M. Molecular simulations of zeolites: Adsorption, diffusion, and shape selectivity. Chem. Rev. 108, 4125–4184 (2008).

    Article  CAS  Google Scholar 

  21. Park, J. H. & Aluru, N. R. Ordering-induced fast diffusion of nanoscale water film on graphene. J. Phys. Chem. C 114, 2595–2599 (2010).

    Article  CAS  Google Scholar 

  22. Mittal, J., Truskett, T. M., Errington, J. R. & Hummer, G. Layering and position-dependent diffusive dynamics of confined fluids. Phys. Rev. Lett. 100, 145901 (2008).

    Article  Google Scholar 

  23. Russell, J. T., Wang, B. Y. & Kral, P. Nanodroplet transport on vibrated nanotubes. J. Phys. Chem. Lett. 3, 353–357 (2012).

    Article  CAS  Google Scholar 

  24. Fasolino, A., Los, J. H. & Katsnelson, M. I. Intrinsic ripples in graphene. Nature Mater. 6, 858–861 (2007).

    Article  CAS  Google Scholar 

  25. Los, J. H., Katsnelson, M. I., Yazyev, O. V., Zakharchenko, K. V. & Fasolino, A. Scaling properties of flexible membranes from atomistic simulations: Application to graphene. Phys. Rev. B 80, 121405(R) (2009).

    Article  Google Scholar 

  26. Gao, W. & Huang, R. Thermomechanics of monolayer graphene: Rippling, thermal expansion and elasticity. J. Mech. Phys. Solids 66, 42–58 (2014).

    Article  CAS  Google Scholar 

  27. Neek-Amal, M., Abedpour, N., Rasuli, S. N., Naji, A. & Ejtehadi, M. R. Diffusive motion of C-60 on a graphene sheet. Phys. Rev. E 82, 051605 (2010).

    Article  CAS  Google Scholar 

  28. Lebedeva, I. V. et al. Fast diffusion of a graphene flake on a graphene layer. Phys. Rev. B 82, 155460 (2010).

    Article  Google Scholar 

  29. Los, J. H., Bichara, C. & Pellenq, R. J. M. Tight binding within the fourth moment approximation: Efficient implementation and application to liquid Ni droplet diffusion on graphene. Phys. Rev. B 84, 085455 (2011).

    Article  Google Scholar 

  30. Maruyama, Y. Temperature dependence of Levy-type stick-slip diffusion of a gold nanocluster on graphite. Phys. Rev. B 69, 245408 (2004).

    Article  Google Scholar 

  31. Lewis, L. J., Jensen, P., Combe, N. & Barrat, J. L. Diffusion of gold nanoclusters on graphite. Phys. Rev. B 61, 16084–16090 (2000).

    Article  CAS  Google Scholar 

  32. Chen, J. & Chan, K. Y. Size-dependent mobility of platinum cluster on a graphite surface. Mol. Simul. 31, 527–533 (2005).

    Article  CAS  Google Scholar 

  33. Bao, W. et al. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nature Nanotech. 4, 562–566 (2009).

    Article  CAS  Google Scholar 

  34. Xu, P. et al. Unusual ultra-low-frequency fluctuations in freestanding graphene. Nature Commun. 5, 3720 (2014).

    Article  CAS  Google Scholar 

  35. Bonini, N., Garg, J. & Marzari, N. Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Nano Lett. 12, 2673–2678 (2012).

    Article  CAS  Google Scholar 

  36. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    Article  CAS  Google Scholar 

  37. Zan, R. et al. Scanning tunnelling microscopy of suspended graphene. Nanoscale 4, 3065–3068 (2012).

    Article  CAS  Google Scholar 

  38. Bangert, U. et al. STEM plasmon spectroscopy of free standing graphene. Phys. Status Solidi A 205, 2265–2269 (2008).

    Article  CAS  Google Scholar 

  39. de Lima, A. L. et al. Soliton instability and fold formation in laterally compressed graphene. Nanotechnology 26, 045707 (2015).

    Article  Google Scholar 

  40. Guo, Y. & Guo, W. Soliton-like thermophoresis of graphene wrinkles. Nanoscale 5, 318–323 (2013).

    Article  CAS  Google Scholar 

  41. Cao, P. G., Xu, K., Varghese, J. O. & Heath, J. R. The microscopic structure of adsorbed water on hydrophobic surfaces under ambient conditions. Nano Lett. 11, 5581–5586 (2011).

    Article  CAS  Google Scholar 

  42. Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: Very different slippage despite very similar interface structures. Nano Lett. 14, 6872–6877 (2014).

    Article  CAS  Google Scholar 

  43. Zambrano, H. A., Walther, J. H., Koumoutsakos, P. & Sbalzarini, I. F. Thermophoretic motion of water nanodroplets confined inside carbon nanotubes. Nano Lett. 9, 66–71 (2009).

    Article  CAS  Google Scholar 

  44. Abascal, J. L. F. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005).

    Article  CAS  Google Scholar 

  45. Jiang, T., Huang, R. & Zhu, Y. Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Adv. Funct. Mater. 24, 396–402 (2014).

    Article  CAS  Google Scholar 

  46. Yang, L. Q. & Rahman, T. S. Enhanced anharmonicity on Cu(110). Phys. Rev. Lett. 67, 2327–2330 (1991).

    Article  CAS  Google Scholar 

  47. Ciplys, D. et al. 2010 IEEE Sensors 785–788 (IEEE, 2010).

    Google Scholar 

  48. Mayo, S. L., Olafson, B. D. & Goddard, W. A. III Dreiding—a generic force-field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990).

    Article  CAS  Google Scholar 

  49. Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.M. was supported by the European Research Council (ERC) and Bio Nano Consulting. A.M. was also supported by the ERC and the Royal Society through a Royal Society Wolfson Research Merit Award. We are grateful for computer time to UCL Research Computing, the London Centre for Nanotechnology, and the UK’s national high-performance computing service HECToR (from which access was obtained through the UK’s Material Chemistry Consortium, EP/F067496).

Author information

Authors and Affiliations

Authors

Contributions

A.M., G.A. and M.M. proposed and designed the project. M.M. performed the force-field MD simulations and data analysis. A.M. participated in data analysis. G.T. performed AIMD simulations. A.M. and M.M. wrote the manuscript. All authors participated in manuscript preparation.

Corresponding author

Correspondence to Angelos Michaelides.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1833 kb)

Supplementary Information

Supplementary Movie 1 (MOV 14648 kb)

Supplementary Information

Supplementary Movie 2 (MOV 2503 kb)

Supplementary Information

Supplementary Movie 3 (MOV 3829 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Tocci, G., Michaelides, A. et al. Fast diffusion of water nanodroplets on graphene. Nature Mater 15, 66–71 (2016). https://doi.org/10.1038/nmat4449

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4449

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing