Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Potential-dependent dynamic fracture of nanoporous gold

Abstract

When metallic alloys are exposed to a corrosive environment, porous nanoscale morphologies spontaneously form that can adversely affect the mechanical integrity of engineered structures1,2. This form of stress-corrosion cracking is responsible for the well-known ‘season cracking’ of brass and stainless steel components in nuclear power generating stations3,4. One explanation for this is that a high-speed crack is nucleated within the porous layer, which subsequently injects into non-porous parent-phase material5. We study the static and dynamic fracture properties of free-standing monolithic nanoporous gold as a function electrochemical potential using high-speed photography and digital image correlation. The experiments reveal that at electrochemical potentials typical of porosity formation6 these structures are capable of supporting dislocation-mediated plastic fracture at crack velocities of 200 m s−1. Our results identify the important role of high-speed fracture in stress-corrosion cracking and are directly applicable to the behaviour of monolithic dealloyed materials at present being considered for a variety of applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fracture surfaces and mechanical properties of 40 nm NPG.
Figure 2: Dynamic fracture in 40 nm NPG at 0.5 V.
Figure 3: Dynamic fracture in 40 nm NPG for samples treated at 1.2 and 1.4 V.
Figure 4: Summary of results for the normalized terminal crack velocity as a function of the electrochemical potential.

Similar content being viewed by others

References

  1. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N. & Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001).

    Article  CAS  Google Scholar 

  2. Sieradzki, K. & Newman, R. C. Stress-corrosion cracking. J. Phys. Chem. Solids 48, 1101–1113 (1987).

    Article  CAS  Google Scholar 

  3. Ford, P. F. & Andresen, P. L. in Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors (eds Theus, G. J. & Weeles, J. R.) 789–800 (Metallurgical Society, 1988).

    Google Scholar 

  4. Nisbet, W. J., Lorimer, G. W. & Newman, R. C. A transmission electron microscopy study of stress corrosion cracking in stainless steels. Corros. Sci. 35, 457–469 (1993).

    Article  CAS  Google Scholar 

  5. Sieradzki, K. & Newman, R. C. Brittle behavior of ductile metals during stress-corrosion cracking. Phil. Mag. A 51, 95–132 (1985).

    Article  CAS  Google Scholar 

  6. Rugolo, J., Erlebacher, J. & Sieradzki, K. Length scales in alloy dissolution and measurement of absolute interfacial free energy. Nature Mater. 5, 946–949 (2006).

    Article  CAS  Google Scholar 

  7. Cassagne, T. B., Flanagan, W. F. & Lichter, B. D. On the failure mechanism of chemically embrittled Cu3Au single crystals. Metall. Trans. A 17, 703–710 (1986).

    Article  Google Scholar 

  8. Chen, J. S., Salmeron, M. & Devine, T. M. Intergranular and transgranular stress corrosion cracking of Cu-30Au. Corros. Sci. 34, 2071–2097 (1993).

    Article  CAS  Google Scholar 

  9. Friedersdorf, F. & Sieradzki, K. Film-induced brittle intergranular cracking of silver-gold alloys. Corrosion 52, 331–336 (1996).

    Article  CAS  Google Scholar 

  10. Barnes, A., Senior, N. A. & Newman, R. C. Film-induced cleavage of Ag–Au alloys. Metall. Mater. Trans. A 40, 58–68 (2009).

    Article  Google Scholar 

  11. Sieradzki, K., Kim, J. S., Cole, A. T. & Newman, R. C. The relationship between dealloying and transgranular stress-corrosion cracking of CuZn and CuAl alloys. J. Electrochem. Soc. 134, 1635–1639 (1987).

    Article  CAS  Google Scholar 

  12. Serebrinsky, S. A. & Galvele, J. R. Effect of the strain rate on stress corrosion crack velocities in face-centered cubic alloys. A mechanistic interpretation. Corros. Sci. 46, 591–612 (2004).

    Article  CAS  Google Scholar 

  13. Snyder, J., Fujita, T., Chen, M. W. & Erlebacher, J. Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nature Mater. 9, 904–907 (2010).

    Article  CAS  Google Scholar 

  14. Chen, Q. & Sieradzki, K. Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nature Mater. 12, 1102–1106 (2013).

    Article  CAS  Google Scholar 

  15. Weissmüller, J. et al. Charge-induced reversible strain in a metal. Science 300, 312–315 (2003).

    Article  Google Scholar 

  16. Kramer, D., Viswanath, R. N. & Weissmüller, J. Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett. 4, 793–796 (2004).

    Article  CAS  Google Scholar 

  17. Hu, K., Lan, D., Li, X. & Zhang, S. Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA–Au bio bar codes. Anal. Chem. 80, 9124–9130 (2008).

    Article  CAS  Google Scholar 

  18. Stowers, K. J., Madix, R. J. & Friend, C. M. From model studies on Au(111) to working conditions with unsupported gold catalysts: Oxygen-assisted coupling reactions. J. Catal. 308, 131–141 (2013).

    Article  CAS  Google Scholar 

  19. Fugita, T. et al. Atomic origins of the high catalytic activity of nanoporous gold. Nature Mater. 11, 775–780 (2012).

    Article  Google Scholar 

  20. Garcia-Gradilla, V. et al. Ultrasound-propelled nanoporous gold wire for efficient drug loading and release. Small 10, 4154–4159 (2014).

    CAS  Google Scholar 

  21. Fujita, T. et al. Three-dimensional morphology of nanoporous gold. Appl. Phys. Lett. 82, 251902 (2008).

    Article  Google Scholar 

  22. Li, R. & Sieradzki, K. Ductile–brittle transition in random porous Au. Phys. Rev. Lett. 68, 1168–1171 (1992).

    Article  CAS  Google Scholar 

  23. Jin, H-J. et al. Deforming nanoporous metal: Role of lattice coherency. Acta Mater. 57, 2665–2672 (2009).

    Article  CAS  Google Scholar 

  24. Jin, H-J. & Weissmüller, J. A material with electrically tunable strength and flow stress. Science 332, 1179–1182 (2011).

    Article  CAS  Google Scholar 

  25. Duxbury, P. M., Leath, P. L. & Beale, P. D. Breakdown properties of quenched random systems: The random fuse network. Phys. Rev. B 36, 367–380 (1987).

    Article  CAS  Google Scholar 

  26. Freund, L. B. Dynamic Fracture Mechanics (Cambridge Univ. Press, 1998).

    Google Scholar 

  27. Bouchbinder, E., Goldman, T. & Fineberg, J. The dynamics of rapid fracture: Instabilities, nonlinearities and length scales. Rep. Prog. Phys. 77, 046501 (2014).

    Article  Google Scholar 

  28. Goldman, T., Livine, A. & Fineberg, J. Acquisition of inertia by a moving crack. Phys. Rev. Lett. 104, 114301 (2010).

    Article  Google Scholar 

  29. Corcoran, S. G., Brankovic, S. R., Dimitrov, N. & Sieradzki, K. Nanoindentation of atomically modified surfaces. Mater. Res. Soc. Proc. 505, 77–84 (1998).

    Article  CAS  Google Scholar 

  30. Angerstein-Kozlowska, H., Conway, B. E., Mamelin, A. & Stoicoviciu, L. Elementary steps of electrochemical oxidation of single-crystal planes of Au—I. Chemical basis of processes involving geometry of anions and the electrode surfaces. Electrochim. Acta 31, 1051–1061 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.S. thanks L. B. Freund for suggesting the use of the particle velocity equations described in the Supplementary Information for calculating Kdyn. S.S. thanks S. Klein for help with developing the high-speed photography protocols. This work was supported by the US DOE Basic Energy Sciences under award DE-SC0008677.

Author information

Authors and Affiliations

Authors

Contributions

S.S. developed the experimental protocols for the high-speed photography and performed all of the measurements on imbibed samples. X.C. performed the dynamic fracture experiments at 1.2 and 1.4 V. N.B. did all tests and analysis involving DIC. K.S. designed and supervised the research and wrote the manuscript.

Corresponding author

Correspondence to Karl Sieradzki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Chen, X., Badwe, N. et al. Potential-dependent dynamic fracture of nanoporous gold. Nature Mater 14, 894–898 (2015). https://doi.org/10.1038/nmat4335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing