Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

DNA-linked superlattices get into shape

Advances in the control of the shape, bonding direction and valency of DNA-coated nanoparticles allow the synthesis of nanoparticle crystallites of ever increasing complexity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transformations between crystalline lattices.
Figure 2: Self-assembly mediated by specific interactions.
Figure 3: DNA origami can be used to create arbitrary shapes and devices at the nano- and microscales.
Figure 4: DNA tiles.

References

  1. Nature 505, 601 (2014).

  2. Bragg, W. L. Proc. R. Soc. Lond. A 89, 248–277 (1913).

    Article  CAS  Google Scholar 

  3. Watson, J. D. & Crick, F. H. C. Nature 171, 737–738 (1953).

    Article  CAS  Google Scholar 

  4. Kendrew, J. C. et al. Nature 181, 662–666 (1958).

    Article  CAS  Google Scholar 

  5. Cramer, P. et al. Science 292, 1863–1876 (2001).

    Article  CAS  Google Scholar 

  6. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Science 254, 1312–1319 (1991).

    Article  CAS  Google Scholar 

  7. Tan, P., Xu, N. & Xu, L. Nature Phys. 10, 73–79 (2014).

    Article  CAS  Google Scholar 

  8. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Science 347, 1260901–1260911 (2015).

    Article  Google Scholar 

  9. Shevchenko, E. V. et al. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  10. O'Brien, M. N. et al. Nature Mater. 14, 833–839 (2015).

    Article  CAS  Google Scholar 

  11. Zhang, Y. et al. Nature Mater. 14, 840–847 (2015).

    Article  CAS  Google Scholar 

  12. Ross, M. B. et al. Nature Nanotech. 10, 453–458 (2015).

    Article  CAS  Google Scholar 

  13. Tian, Y. et al. Nature Nanotech. 10, 637–644 (2015).

    Article  CAS  Google Scholar 

  14. Lu, F. et al. Nature Commun. 6, 6912 (2015).

    Article  CAS  Google Scholar 

  15. Jones, M. R. et al. Nature Mater. 9, 913–917 (2010).

    Article  CAS  Google Scholar 

  16. Wang, Y. et al. Nature 491, 51–55 (2012).

    Article  CAS  Google Scholar 

  17. Li, Y. et al. J. Am. Chem. Soc. 137, 4320–4323 (2015).

    Article  CAS  Google Scholar 

  18. Seeman, N. C. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  Google Scholar 

  19. Zhang, F. et al. J. Am. Chem. Soc. 136, 11198–11211 (2014).

    Article  CAS  Google Scholar 

  20. Smith, M. D. et al. Nanomedicine 8, 105–121 (2013).

    Article  CAS  Google Scholar 

  21. Acuna, G. P. et al. Science 338, 506–510 (2012).

    Article  CAS  Google Scholar 

  22. Kuzyk, A. et al. Nature 483, 311–314 (2012).

    Article  CAS  Google Scholar 

  23. Rothemund, P. W. K Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  24. Douglas, S. M. et al. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article  CAS  Google Scholar 

  25. Castro, C. E. et al. Nature Methods 8, 221–229 (2011).

    Article  CAS  Google Scholar 

  26. Zheng, J. et al. Nano Lett. 6, 1502–1504 (2006).

    Article  CAS  Google Scholar 

  27. Zheng, J. et al. Nature 461, 74–77 (2009).

    Article  CAS  Google Scholar 

  28. Liu, W. et al. Angew. Chem. Int. Ed. 50, 264–267 (2010).

    Article  Google Scholar 

  29. Ke, Y. et al. Nature Chem. 6, 994–1002 (2014).

    Article  CAS  Google Scholar 

  30. Kocabey, S. et al. ACS Nano 9, 3530–3539 (2015).

    Article  CAS  Google Scholar 

  31. Schreiber, R. et al. Nature Nanotech. 9, 74–78 (2014).

    Article  CAS  Google Scholar 

  32. Mao, C., Sun, W., Shen, Z. & Seeman, N. C. Nature 397, 144–146 (1999).

    Article  CAS  Google Scholar 

  33. Yurke, B. et al. Nature 406, 605–608 (2000).

    Article  CAS  Google Scholar 

  34. Ding, B. et al. Science 314, 1583–1585 (2006).

    Article  CAS  Google Scholar 

  35. Gerling, T. et al. Science 347, 1446–1452 (2015).

    Article  CAS  Google Scholar 

  36. Kuzyk, A. et al. Nature Mater. 13, 862–866 (2014).

    Article  CAS  Google Scholar 

  37. Auyeung, E. et al. Nature 505, 73–77 (2014).

    Article  Google Scholar 

  38. Park, D. J. et al. Proc. Natl Acad. Sci. USA 112, 977–981 (2015).

    Article  CAS  Google Scholar 

  39. Link, D. R. et al. Science 278, 1924–1927 (1997).

    Article  CAS  Google Scholar 

  40. Brodin, J. D., Auyeung, E. & Mirkin, C. A. Proc. Natl Acad. Sci. USA 112, 4564–4569 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N.C. Seeman, O. Gang and C.A. Mirkin for their helpful comments, and the Deutsche Forschungsgesellschaft (DFG) for their generous financial support through the Sonderforschungsbereich SFB 1032 (Projects A06 and A07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Liedl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nickel, B., Liedl, T. DNA-linked superlattices get into shape. Nature Mater 14, 746–749 (2015). https://doi.org/10.1038/nmat4376

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing