Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The effect of mechanical twisting on oxygen ionic transport in solid-state energy conversion membranes

Subjects

Abstract

Understanding ‘electro–chemo–mechanics’ in oxygen ion conducting membranes represents a foundational step towards new energy devices such as micro fuel cells and oxygen or fuel separation membranes. For ionic transport in macro crystalline electrolytes, doping is conventionally used to affect oxygen ionic association/migration energies. Recently, tuning ionic transport in films through lattice strain conveyed by substrates or heterostructures has generated much interest. However, reliable manipulation of strain states to twist the ionic conduction in real micro energy devices remains intractable. Here, we demonstrate that the oxygen ionic conductivity clearly correlates with the compressive strain energy acting on the near order of the electrolyte lattices by comparing thin-film ceria-based membrane devices against substrate-supported flat structures. It is possible to capitalize on this phenomenon with a smart choice of strain patterns achieved through microelectrode design. We highlight the importance of electro–chemo–mechanics in the electrolyte material for the next generation of solid-state energy conversion microdevices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Micro energy conversion membranes with different microelectrode patterns.
Figure 2: Probing electro–chemo–mechanics, the tie between oxygen ionic transport–oxygen anionic–cationic near order–strain.
Figure 3: Microelectrode designs to tune strain patterns of oxygen ionic conducting energy conversion membranes.
Figure 4: Computation of second-order buckling strain patterns for oxygen ionic conducting energy conversion membranes.

Similar content being viewed by others

References

  1. Evans, A., Bieberle-Hütter, A., Rupp, J. L. M. & Gauckler, L. J. Review on microfabricated micro-solid oxide fuel cell membranes. J. Power Sources 194, 119–129 (2009).

    Article  CAS  Google Scholar 

  2. Evans, A. et al. Micro-solid oxide fuel cells: Status, challenges, and chances. Monatsh. Chem. 140, 975–983 (2009).

    Article  CAS  Google Scholar 

  3. Garbayo, I. et al. Full ceramic micro solid oxide fuel cells: Towards more reliable MEMS power generators operating at high temperatures. Energy Environ. Sci. 7, 3617–3629 (2014).

    Article  CAS  Google Scholar 

  4. Wachsman, E., Ishihara, T. & Kilner, J. Low-temperature solid-oxide fuel cells. MRS Bull. 39, 773–779 (2014).

    Article  CAS  Google Scholar 

  5. Oudenhoven, J. F. M., Baggetto, L. & Notten, P. H. L. All-solid-state lithium-ion microbatteries: A review of various three-dimensional concepts. Adv. Energy Mater. 1, 10–33 (2011).

    Article  CAS  Google Scholar 

  6. Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    Article  CAS  Google Scholar 

  7. Messerschmitt, F., Kubicek, M., Schweiger, S. & Rupp, J. L. M. Memristor kinetics and diffusion characteristics for mixed anionic-electronic SrTiO3−δ bits: The memristor-based cottrell analysis connecting material to device performance. Adv. Funct. Mater. 24, 7448–7460 (2014).

    Article  CAS  Google Scholar 

  8. Rupp, J. L. M. Ionic diffusion as a matter of lattice-strain for electroceramic thin films. Solid State Ion. 207, 1–13 (2012).

    Article  CAS  Google Scholar 

  9. Rupp, J. L. M. et al. Scalable oxygen-ion transport kinetics in metal-oxide films: Impact of thermally induced lattice compaction in acceptor doped ceria films. Adv. Funct. Mater. 24, 1562–1574 (2014).

    Article  CAS  Google Scholar 

  10. Rupp, J. L. M., Scherrer, B., Schäuble, N. & Gauckler, L. J. Time-temperature-transformation (TTT) diagrams for crystallization of metal oxide thin films. Adv. Funct. Mater. 20, 2807–2814 (2010).

    Article  CAS  Google Scholar 

  11. Evans, A. et al. Residual stress and buckling patterns of free-standing yttria-stabilized-zirconia membranes fabricated by pulsed laser deposition. Fuel Cells 12, 614–623 (2012).

    Article  CAS  Google Scholar 

  12. Kerman, K., Xuza, S. & Ramanathan, S. Free standing yttria-doped zirconia membranes: Geometrical effects on stability. J. Electroceramics 34, 91–99 (2015).

    Article  CAS  Google Scholar 

  13. Tuller, H. L. & Bishop, S. R. Point defects in oxides: Tailoring materials through defect engineering. Annu. Rev. Mater. Res. 41, 369–398 (2011).

    Article  CAS  Google Scholar 

  14. Yildiz, B. “Stretching” the energy landscape of oxides—effects on electrocatalysis and diffusion. MRS Bull. 39, 147–156 (2014).

    Article  CAS  Google Scholar 

  15. Schweiger, S., Kubicek, M., Messerschmitt, F., Murer, C. & Rupp, J. L. M. A micro-dot multilayer oxide device: Let’s tune the strain-ionic transport interaction. ACS Nano 8, 5032–5048 (2014).

    Article  CAS  Google Scholar 

  16. Schichtel, N., Korte, C., Hesse, D. & Janek, J. Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films—theoretical considerations and experimental studies. Phys. Chem. Chem. Phys. 11, 3043–3048 (2009).

    Article  CAS  Google Scholar 

  17. Tsvetkov, N., Lu, Q., Chen, Y. & Yildiz, B. Accelerated oxygen exchange kinetics on Nd2NiO4+δ thin films with tensile strain along c-axis. ACS Nano 9, 1613–1621 (2015).

    Article  CAS  Google Scholar 

  18. Sillassen, M. et al. Low-temperature superionic conductivity in strained yttria-stabilized zirconia. Adv. Funct. Mater. 20, 2071–2076 (2010).

    Article  CAS  Google Scholar 

  19. MohanKant, K., Esposito, V. & Pryds, N. Strain induced ionic conductivity enhancement in epitaxial Ce0.9Gd0.1O2−δ thin films. Appl. Phys. Lett. 100, 033105 (2012).

    Article  Google Scholar 

  20. Garcia-Barriocanal, J. et al. Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321, 676–680 (2008).

    Article  CAS  Google Scholar 

  21. Korte, C. et al. Coherency strain and its effect on ionic conductivity and diffusion in solid electrolytes—an improved model for nanocrystalline thin films and a review of experimental data. Phys. Chem. Chem. Phys. 16, 24575–24591 (2014).

    Article  CAS  Google Scholar 

  22. Hinterberg, J., Zacherle, T. & De Souza, R. A. Activation volume tensor for oxygen-vacancy migration in strained CeO2 electrolytes. Phys. Rev. Lett. 110, 205901 (2013).

    Article  CAS  Google Scholar 

  23. De Souza, R. A., Ramadan, A. & Hörner, S. Modifying the barriers for oxygen-vacancy migration in fluorite-structured CeO2 electrolytes through strain: A computer simulation study. Energy Environ. Sci 5, 5445–5453 (2012).

    Article  CAS  Google Scholar 

  24. Shen, W., Jiang, J. & Hertz, J. L. Reduced ionic conductivity in biaxially compressed ceria. RSC Adv. 4, 21625–21630 (2014).

    Article  CAS  Google Scholar 

  25. Schichtel, N. et al. On the influence of strain on ion transport: Microstructure and ionic conductivity of nanoscale YSZ—Sc2O3 multilayers. Phys. Chem. Chem. Phys. 12, 14596–14608 (2010).

    Article  CAS  Google Scholar 

  26. Shen, W., Jiang, J. & Hertz, J. L. Beneficial lattice strain in heterogeneously doped ceria. J. Phys. Chem. C 118, 22904–22912 (2014).

    Article  CAS  Google Scholar 

  27. Huang, H. et al. High-performance ultrathin solid oxide fuel cells for low-temperature operation. J. Electrochem. Soc. 154, B20–B24 (2007).

    Article  CAS  Google Scholar 

  28. Bieberle-Hütter, A., Reinhard, P., Rupp, J. L. M. & Gauckler, L. J. The impact of etching during microfabrication on the microstructure and the electrical conductivity of gadolinia-doped ceria thin films. J. Power Sources 196, 6070–6078 (2011).

    Article  Google Scholar 

  29. Rupp, J. L. M., Muecke, U. P., Nalam, P. C. & Gauckler, L. J. Wet-etching of precipitation-based thin film microstructures for micro-solid oxide fuel cells. J. Power Sources 195, 2669–2676 (2010).

    Article  CAS  Google Scholar 

  30. Kerman, K., Tallinen, T., Ramanathan, S. & Mahadevan, L. Elastic configurations of self-supported oxide membranes for fuel cells. J. Power Sources 222, 359–366 (2013).

    Article  CAS  Google Scholar 

  31. Garbayo, I. et al. Electrical characterization of thermomechanically stable YSZ membranes for micro solid oxide fuel cells applications. Solid State Ion. 181, 322–331 (2010).

    Article  CAS  Google Scholar 

  32. Safa, Y., Hocker, T., Prestat, M. & Evans, A. Post-buckling design of thin-film electrolytes in micro-solid oxide fuel cells. J. Power Sources 250, 332–342 (2014).

    Article  CAS  Google Scholar 

  33. Greenberg, B. M., Wachtel, E., Lubomirsky, I., Fleig, J. & Maier, J. Elasticity of solids with a large concentration of point defects. Adv. Funct. Mater. 16, 48–52 (2006).

    Article  CAS  Google Scholar 

  34. Lubomirsky, I. Stress adaptation in ceramic thin films. Phys. Chem. Chem. Phys. 9, 3701–3710 (2007).

    Article  CAS  Google Scholar 

  35. Lubomirsky, I. Practical applications of the chemical strain effect in ionic and mixed conductors. Monatsh. Chem. 140, 1025–1030 (2009).

    Article  CAS  Google Scholar 

  36. Marrocchelli, D., Bishop, S. R., Tuller, H. L. & Yildiz, B. Understanding chemical expansion in non-stoichiometric oxides: Ceria and zirconia case studies. Adv. Funct. Mater. 22, 1958–1965 (2012).

    Article  CAS  Google Scholar 

  37. Davis, L. Investigation of Residual and Thermal Stress on Membrane-Based MEMS Devices (Univ. South Florida, 2009); http://scholarcommons.usf.edu/etd/1925

    Google Scholar 

  38. Baertsch, C. et al. Fabrication and structural characterization of self-supporting electrolyte membranes for a micro solid-oxide fuel cell. J. Mater. Res. 19, 2604–2615 (2004).

    Article  CAS  Google Scholar 

  39. Timoshenko, S. P. Theory of Elastic Stability (Dover, 2009).

    Google Scholar 

  40. Kossoy, A. et al. Influence of point-defect reaction kinetics on the lattice parameter of Ce0.8Gd0.2O1.9 . Adv. Funct. Mater. 19, 634–641 (2009).

    Article  CAS  Google Scholar 

  41. Anjaneya, K. C., Nayaka, G. P., Manjanna, J., Govindaraj, G. & Ganesha, K. N. Preparation and characterization of Ce1−xGdxO2−δ (x = 0.1–0.3) as solid electrolyte for intermediate temperature SOFC. J. Alloys Compd. 578, 53–59 (2013).

    Article  CAS  Google Scholar 

  42. Mogensen, M., Sammes, N. & Tompsett, G. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion. 129, 63–94 (2000).

    Article  CAS  Google Scholar 

  43. Giannici, F. et al. Structure and oxide ion conductivity: Local order, defect interactions and grain boundary effects in acceptor-doped ceria. Chem. Mater. 26, 5994–6006 (2014).

    Article  CAS  Google Scholar 

  44. Kourouklis, G. A., Jayaraman, A. & Espinosa, G. P. High-pressure Raman study of CeO2 to 35 GPa and pressure-induced phase transformation from the fluorite structure. Phys. Rev. B 37, 4250–4253 (1988).

    Article  CAS  Google Scholar 

  45. Stoney, G. G. The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. A 82, 172–175 (1909).

    Article  CAS  Google Scholar 

  46. Feng, X., Huang, Y. & Rosakis, A. J. On the Stoney formula for a thin film/substrate system with nonuniform substrate thickness. J. Appl. Mech. 74, 1276–1281 (2007).

    Article  Google Scholar 

  47. Yasuda, K., Uemura, K. & Shiota, T. Sintering and mechanical properties of gadolinium-doped ceria ceramics. J. Phys. Conf. Ser. 339, 012006 (2012).

    Article  Google Scholar 

  48. Dolbow, J. & Gosz, M. Effect of out-of-plane properties of a polyimide film on the stress fields in microelectronic structures. Mech. Mater. 23, 311–321 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

S. Li is thanked for support in carrying out parts of the electric measurements. N. Spencer, C. Crémmel, C. Schneider and T. Lippert are thanked for their assistance with analytical tools. The authors acknowledge P. Muralt for providing the Si3N4-coated Si wafers as substrate samples. M. Kubicek, M. Struzik, M. Rawlence and Z. Lapin are thanked for discussion and proof reading. This work was supported by the Swiss National Science Foundation under the project numbers of 144988, 147190 and 138914.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and S.S. performed and executed the experiments and J.L.M.R. discussed and supervised the work. A.H.B. carried out the computational analysis in collaboration with J.L.M.R. and Y.S. The paper was co-written by Y.S., A.H.B., S.S. and J.L.M.R., and all authors discussed the results and interpretations, and commented on the manuscript.

Corresponding author

Correspondence to Jennifer Lilia Marguerite Rupp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2498 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Bork, A., Schweiger, S. et al. The effect of mechanical twisting on oxygen ionic transport in solid-state energy conversion membranes. Nature Mater 14, 721–727 (2015). https://doi.org/10.1038/nmat4278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing