Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stabilizing triplet excited states for ultralong organic phosphorescence

Abstract

The control of the emission properties of synthetic organic molecules through molecular design has led to the development of high-performance optoelectronic devices with tunable emission colours, high quantum efficiencies and efficient energy/charge transfer processes1,2,3,4. However, the task of generating excited states with long lifetimes has been met with limited success, owing to the ultrafast deactivation of the highly active excited states5. Here, we present a design rule that can be used to tune the emission lifetime of a wide range of luminescent organic molecules, based on effective stabilization of triplet excited states through strong coupling in H-aggregated molecules. Our experimental data revealed that luminescence lifetimes up to 1.35 s, which are several orders of magnitude longer than those of conventional organic fluorophores6,7, can be realized under ambient conditions. These results outline a fundamental principle to design organic molecules with extended lifetimes of excited states, providing a major step forward in expanding the scope of organic phosphorescence applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the manipulation of the lifetime of excited states in inorganic and organic materials.
Figure 2: Investigation of the photoluminescence of a nitrogen-based model molecule (DPhCzT) under ambient conditions.
Figure 3: Proposed mechanism for ultralong phosphorescence of the DPhCzT aggregates.
Figure 4: Versatile molecular design for ultralong phosphorescence with tunable colours and data encryption application under ambient conditions.

Similar content being viewed by others

References

  1. Bendikov, M., Wudl, F. & Perepichka, D. F. Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics. Chem. Rev. 104, 4891–4946 (2004).

    Article  CAS  Google Scholar 

  2. Uoyama, H. et al. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  CAS  Google Scholar 

  3. Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).

    Article  CAS  Google Scholar 

  4. Yap, B. K. et al. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nature Mater. 7, 376–380 (2008).

    Article  CAS  Google Scholar 

  5. Vura-Weis, J. et al. Crossover from single-step tunneling to multistep hopping for molecular triplet energy transfer. Science 328, 1547–1550 (2010).

    Article  CAS  Google Scholar 

  6. Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    Article  CAS  Google Scholar 

  7. Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, 2006).

    Book  Google Scholar 

  8. Bakulin, A. A. et al. The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340–1344 (2012).

    Article  CAS  Google Scholar 

  9. Xing, G. C. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    Article  CAS  Google Scholar 

  10. Garcia-Garibay, M. A. Advances at the frontiers of photochemical sciences. J. Am. Chem. Soc. 134, 8289–8292 (2012).

    Article  CAS  Google Scholar 

  11. Cheng, G. et al. Color tunable organic light-emitting devices with external quantum efficiency over 20% based on strongly luminescent gold(III) complexes having long-lived emissive excited states. Adv. Mater. 26, 2540–2546 (2014).

    Article  CAS  Google Scholar 

  12. Zhao, J., Wu, W., Sun, J. & Guo, S. Triplet photosensitizers: From molecular design to applications. Chem. Soc. Rev. 42, 5323–5351 (2013).

    Article  CAS  Google Scholar 

  13. Maldiney, T. et al. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 133, 11810–11815 (2011).

    Article  CAS  Google Scholar 

  14. Van den Eeckhout, K., Smet, P. F. & Poelman, D. Persistent luminescence in Eu2+-doped compounds: A review. Materials 3, 2536–2566 (2010).

    Article  CAS  Google Scholar 

  15. Pan, Z. W., Lu, Y. Y. & Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nature Mater. 11, 58–63 (2012).

    Article  CAS  Google Scholar 

  16. Kohler, A. & Bassler, H. Triplet states in organic semiconductors. Mater. Sci. Eng. R 66, 71–109 (2009).

    Article  Google Scholar 

  17. Xu, H. et al. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 43, 3259–3302 (2014).

    Article  CAS  Google Scholar 

  18. Bolton, O. et al. Activating efficient phosphorescence from purely organic materials by crystal design. Nature Chem. 3, 205–210 (2011).

    Article  CAS  Google Scholar 

  19. Hirata, S. et al. Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions. Adv. Funct. Mater. 23, 3386–3397 (2013).

    Article  CAS  Google Scholar 

  20. Menning, S. et al. Twisted tethered tolanes: Unanticipated long-lived phosphorescence at 77 K. J. Am. Chem. Soc. 135, 2160–2163 (2013).

    Article  CAS  Google Scholar 

  21. Wang, J. et al. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nature Mater. 13, 157–162 (2014).

    Article  CAS  Google Scholar 

  22. Meinardi, F. et al. Superradiance in molecular H-aggregates. Phys. Rev. Lett. 91, 10958–10966 (2003).

    Article  Google Scholar 

  23. Chaudhuri, D. et al. Enhancing long-range exciton guiding in molecular nanowires by H-aggregation lifetime engineering. Nano Lett. 11, 488–492 (2011).

    Article  CAS  Google Scholar 

  24. Petersilka, M., Gossmann, U. J. & Gross, E. K. U. Excitation energies from time-density functional theory. Phys. Rev. Lett. 76, 1212–1215 (1996).

    Article  CAS  Google Scholar 

  25. Beljonne, D., Shuai, Z., Pourtois, G. & Bredas, J. L. Spin–orbit coupling and intersystem crossing in conjugated polymers: A configuration interaction description. J. Phys. Chem. A 105, 3899–3907 (2001).

    Article  CAS  Google Scholar 

  26. Ma, J., Chen, J. Y., Idowu, M. & Nyokong, T. Generation of singlet oxygen via the composites of water-soluble thiol-capped CdTe quantum dots sulfonated aluminum phthalocyanines. J. Phys. Chem. B 112, 4465–4474 (2008).

    Article  CAS  Google Scholar 

  27. Kasha, M., Rawls, H. R. & El-Bayoumi, M. A. The exciton model in molecular spectroscopy. Pure Appl. Chem. 11, 371–392 (1965).

    Article  CAS  Google Scholar 

  28. Lower, S. K. & El-Sayed, M. A. The triplet state and molecular electronic processes in organic molecules. Chem. Rev. 66, 199–241 (1966).

    Article  CAS  Google Scholar 

  29. Congreve, D. N. et al. External quantum efficiency above 100% in singlet-exciton-fission-based organic photovoltaic cell. Science 340, 334–337 (2013).

    Article  CAS  Google Scholar 

  30. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  31. Fennel, F. et al. Biphasic self-assembly pathways and size-dependent photophysical properties of perylene bisimide dye aggregate. J. Am. Chem. Soc. 135, 18722–18725 (2013).

    Article  CAS  Google Scholar 

  32. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Wang, W. Zeng, T. Tsuboi, C. Zhang and G. Xing for technical assistance. This study was supported by the National Natural Science Foundation of China (grant No. 21274065, 21304049, 61136003 and 51173081), the Ministry of Education of China (grant No. IRT1148), a project funded by the priority academic program development of Jiangsu higher education institutions (PAPD, YX03001), the Qing Lan project of Jiangsu province, the Singapore Ministry of Education (MOE2010-T2-1-083), Natural Science Foundation of Jiangsu Province of China (BM2012010) and the National Basic Research Program of China (973 Program) (2012CB933301, 2012CB723402, 2015CB932200 and 2014CB648300).

Author information

Authors and Affiliations

Authors

Contributions

Z.A., C.Z., Y.T., R.C., X.L. and W.H. conceived the experiments. R.C., X.L. and W.H. prepared the paper. Z.A., C.Z., Y.T. and H.S. were primarily responsible for the experiments. R.D., Z.W. and H.L. performed the lifetime measurements. T.C. contributed to TD-DFT calculations. All authors contributed to the data analyses.

Corresponding authors

Correspondence to Runfeng Chen, Xiaogang Liu or Wei Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4214 kb)

Supplementary Information

Supplementary Movie 1 (MP4 19445 kb)

Supplementary Information

Supplementary Movie 2 (MP4 6333 kb)

Supplementary Information

Supplementary Movie 3 (MP4 6394 kb)

Supplementary Information

Supplementary Movie 4 (MP4 3421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Z., Zheng, C., Tao, Y. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nature Mater 14, 685–690 (2015). https://doi.org/10.1038/nmat4259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing