Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten

Abstract

Twinning is a fundamental deformation mode that competes against dislocation slip in crystalline solids. In metallic nanostructures, plastic deformation requires higher stresses than those needed in their bulk counterparts, resulting in the ‘smaller is stronger’ phenomenon. Such high stresses are thought to favour twinning over dislocation slip. Deformation twinning has been well documented in face-centred cubic (FCC) nanoscale crystals. However, it remains unexplored in body-centred cubic (BCC) nanoscale crystals. Here, by using in situ high-resolution transmission electron microscopy and atomistic simulations, we show that twinning is the dominant deformation mechanism in nanoscale crystals of BCC tungsten. Such deformation twinning is pseudoelastic, manifested through reversible detwinning during unloading. We find that the competition between twinning and dislocation slip can be mediated by loading orientation, which is attributed to the competing nucleation mechanism of defects in nanoscale BCC crystals. Our work provides direct observations of deformation twinning as well as new insights into the deformation mechanism in BCC nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deformation twinning in a W bicrystal nanowire under compression.
Figure 2: Reversible deformation twinning and detwinning processes in a W bicrystal nanowire under cyclic loading.
Figure 3: Dislocation dynamics inside a W bicrystal nanowire under [112] compression.
Figure 4: Atomistic simulations of the competition between twinning and dislocation slip in a W nanowire under [112] compression.

Similar content being viewed by others

References

  1. Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater. Sci. 55, 710–757 (2010).

    Article  Google Scholar 

  2. Greer, J. R. & DeHosson, J. T. M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654–724 (2011).

    Article  CAS  Google Scholar 

  3. Zhu, Y. T., Liao, X. Z. & Wu, X. L. Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1–62 (2012).

    Article  CAS  Google Scholar 

  4. Lu, K., Lu, L. & Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009).

    Article  CAS  Google Scholar 

  5. Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

    Article  CAS  Google Scholar 

  6. Shan, Z. W., Mishra, R. K., Syed Asif, S. A., Warren, O. L. & Minor, A. M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nature Mater. 7, 115–119 (2007).

    Article  Google Scholar 

  7. Yu, Q. et al. Strong crystal size effect on deformation twinning. Nature 463, 335–338 (2010).

    Article  CAS  Google Scholar 

  8. Wang, J. W. et al. Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals. Nature Commun. 4, 2340 (2013).

    Article  Google Scholar 

  9. Wang, J. et al. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nature Commun. 4, 1742 (2013).

    Article  Google Scholar 

  10. Marichal, C., Van Swygenhoven, H., Van Petegem, S. & Borca, C. {110} Slip with {112} slip traces in bcc tungsten. Sci. Rep. 3, 2547 (2013).

    Article  Google Scholar 

  11. Li, L. & Ortiz, C. Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour. Nature Mater. 13, 501–507 (2014).

    Article  CAS  Google Scholar 

  12. Huang, L. et al. A new regime for mechanical annealing and strong sample-size strengthening in body centred cubic molybdenum. Nature Commun. 2, 547 (2011).

    Article  Google Scholar 

  13. Greer, J. & Nix, W. Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).

    Article  Google Scholar 

  14. Sedlmayr, A. et al. Existence of two twinning-mediated plastic deformation modes in Au nanowhiskers. Acta Mater. 60, 3985–3993 (2012).

    Article  CAS  Google Scholar 

  15. Yue, Y. et al. Quantitative evidence of crossover toward partial dislocation mediated plasticity in copper single crystalline nanowires. Nano Lett. 12, 4045–4049 (2012).

    Article  CAS  Google Scholar 

  16. Seo, J-H. et al. Superplastic deformation of defect-free Au nanowires via coherent twin propagation. Nano Lett. 11, 3499–3502 (2011).

    Article  CAS  Google Scholar 

  17. Sun, J. et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nature Mater. 13, 1007–1012 (2014).

    Article  CAS  Google Scholar 

  18. Lita, A. E. et al. Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors. IEEE Trans. Appl. Supercond. 15, 3528–3531 (2005).

    Article  CAS  Google Scholar 

  19. Lee, Y-H. et al. Tungsten nanowires and their field electron emission properties. Appl. Phys. Lett. 81, 745–747 (2002).

    Article  CAS  Google Scholar 

  20. Zhang, Y. et al. Automated nanomanipulation for nanodevice construction. Nanotechnology 23, 065304 (2012).

    Article  Google Scholar 

  21. Swygenhoven, H. V., Derlet, P. M. & Frøseth, A. G. Stacking fault energies and slip in nanocrystalline metals. Nature Mater. 3, 399–403 (2004).

    Article  Google Scholar 

  22. Warner, D. H., Curtin, W. A. & Qu, S. Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. Nature Mater. 6, 876–881 (2007).

    Article  CAS  Google Scholar 

  23. Yamakov, V. I. & Glaessgen, E. H. Nanoscale fracture: To twin or not to twin. Nature Mater. 6, 795–796 (2007).

    Article  CAS  Google Scholar 

  24. Yu, Q. et al. The nanostructured origin of deformation twinning. Nano Lett. 12, 887–892 (2012).

    Article  CAS  Google Scholar 

  25. Christian, J. W. & Mahajan, S. Deformation twinning. Prog. Mater. Sci. 39, 1–157 (1995).

    Article  Google Scholar 

  26. Argon, A. S. & Maloof, S. R. Fracture of tungsten single crystals at low temperatures. Acta Metall. 14, 1463–1468 (1966).

    Article  CAS  Google Scholar 

  27. Chen, C. Q., Florando, J. N., Kumar, M., Ramesh, K. T. & Hemker, K. J. Incipient deformation twinning in dynamically sheared bcc tantalum. Acta Mater. 69, 114–125 (2014).

    Article  CAS  Google Scholar 

  28. Kim, J-Y., Jang, D. & Greer, J. R. Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355–2363 (2010).

    Article  CAS  Google Scholar 

  29. Han, M. S. et al. Critical-temperature/Peierls-stress dependent size effects in body centered cubic nanopillars. Appl. Phys. Lett. 102, 041910 (2013).

    Article  Google Scholar 

  30. Xie, K. Y. et al. The effect of pre-existing defects on the strength and deformation behavior of α-Fe nanopillars. Acta Mater. 61, 439–452 (2013).

    Article  CAS  Google Scholar 

  31. Marichal, C. et al. Origin of anomalous slip in tungsten. Phys. Rev. Lett. 113, 025501 (2014).

    Article  CAS  Google Scholar 

  32. Chisholm, C. et al. Dislocation starvation and exhaustion hardening in Mo alloy nanofibers. Acta Mater. 60, 2258–2264 (2012).

    Article  CAS  Google Scholar 

  33. Bei, H., Shim, S., Pharr, G. M. & George, E. P. Effects of pre-strain on the compressive stress–strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762–4770 (2008).

    Article  CAS  Google Scholar 

  34. Schneider, A. et al. Correlation between critical temperature and strength of small-scale bcc pillars. Phys. Rev. Lett. 103, 105501 (2009).

    Article  CAS  Google Scholar 

  35. Wang, Y. M. et al. Deformation twinning during nanoindentation of nanocrystalline Ta. Appl. Phys. Lett. 86, 101915 (2005).

    Article  Google Scholar 

  36. Duesbery, M. S. & Vitek, V. Plastic anisotropy in b.c.c. transition metals. Acta Mater. 46, 1481–1492 (1998).

    Article  CAS  Google Scholar 

  37. Narayanan, S., McDowell, D. L. & Zhu, T. Crystal plasticity model for BCC iron atomistically informed by kinetics of correlated kinkpair nucleation on screw dislocation. J. Mech. Phys. Solids 65, 54–68 (2014).

    Article  CAS  Google Scholar 

  38. Weinberger, C. R. & Cai, W. Surface-controlled dislocation multiplication in metal micropillars. Proc. Natl Acad. Sci. USA 105, 14304–14307 (2008).

    Article  CAS  Google Scholar 

  39. Gumbsch, P., Riedle, J., Hartmaier, A. & Fischmeister, H. F. Controlling factors for the brittle-to-ductile transition in tungsten single crystals. Science 282, 1293–1295 (1998).

    Article  CAS  Google Scholar 

  40. Brunner, D. Comparison of flow-stress measurements on high-purity tungsten single crystals with the kink-pair theory. Mater. Trans. 41, 152–160 (2000).

    Article  CAS  Google Scholar 

  41. Weinberger, C. R., Boyce, B. L. & Battaile, C. C. Slip planes in bcc transition metals. Int. Mater. Rev. 58, 296–314 (2013).

    Article  CAS  Google Scholar 

  42. Srivastava, K., Weygand, D. & Gumbsch, P. Dislocation junctions as indicators of elementary slip planes in body-centered cubic metals. J. Mater. Sci. 49, 7333–7337 (2014).

    Article  CAS  Google Scholar 

  43. Caillard, D. Kinetics of dislocations in pure Fe. Part I. In situ straining experiments at room temperature. Acta Mater. 58, 3493–3503 (2010).

    Article  CAS  Google Scholar 

  44. Ogata, S., Li, J. & Yip, S. Energy landscape of deformation twinning in bcc and fcc metals. Phys. Rev. B 71, 224102 (2005).

    Article  Google Scholar 

  45. Greer, J. R., Weinberger, C. R. & Cai, W. Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations. Mater. Sci. Eng. A 493, 21–25 (2008).

    Article  Google Scholar 

  46. Juan, J. S., Nó, M. L. & Schuh, C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nature Nanotechnol. 4, 415–419 (2009).

    Article  Google Scholar 

  47. Lai, A., Du, Z. H., Gan, C. L. & Schuh, C. A. Shape memory and superelastic ceramics at small scales. Science 341, 1505–1508 (2013).

    Article  CAS  Google Scholar 

  48. Li, S. et al. High-efficiency mechanical energy storage and retrieval using interfaces in nanowires. Nano Lett. 10, 1774–1779 (2010).

    Article  CAS  Google Scholar 

  49. Zhong, L., Wang, J., Sheng, H., Zhang, Z. & Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177–180 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.X.M. acknowledges the support from NSF CMMI 08 010934 through University of Pittsburgh and Sandia National Lab. T.Z. acknowledges the support from DOE NEUP Grant DE-AC07-05ID14517, NSF grant DMR-1410331, and HPC resources in CAS Shenyang Supercomputing Centre. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. This research was supported in part by an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering, sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its US Department of Energy Contract No. DE-AC04-94AL85000. The authors are grateful to W. Cai of Stanford University, J. Li of Massachusetts Institute of Technology and J. Y. Huang for stimulating discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.W. designed and conducted experiments, analysed data and wrote the paper under the direction of S.X.M. C.R.W., Z.Zeng and T.Z. performed computer simulations. T.Z., C.R.W. and S.X.M. contributed to data analysis and revised the paper. All the authors contributed to the discussion.

Corresponding authors

Correspondence to Christopher R. Weinberger, Ting Zhu or Scott X. Mao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3039 kb)

Supplementary Information

Supplementary Movie 1 (MOV 4845 kb)

Supplementary Information

Supplementary Movie 2 (MOV 1446 kb)

Supplementary Information

Supplementary Movie 3 (MOV 4433 kb)

Supplementary Information

Supplementary Movie 4 (MOV 13471 kb)

Supplementary Information

Supplementary Movie 5 (MOV 599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zeng, Z., Weinberger, C. et al. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Nature Mater 14, 594–600 (2015). https://doi.org/10.1038/nmat4228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing