Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spectroscopic evidence for negative electronic compressibility in a quasi-three-dimensional spin–orbit correlated metal

Abstract

Negative compressibility is a sign of thermodynamic instability of open1,2,3 or non-equilibrium4,5 systems. In quantum materials consisting of multiple mutually coupled subsystems, the compressibility of one subsystem can be negative if it is countered by positive compressibility of the others. Manifestations of this effect have so far been limited to low-dimensional dilute electron systems6,7,8,9,10,11. Here, we present evidence from angle-resolved photoemission spectroscopy (ARPES) for negative electronic compressibility (NEC) in the quasi-three-dimensional (3D) spin–orbit correlated metal (Sr1−xLax)3Ir2O7. Increased electron filling accompanies an anomalous decrease of the chemical potential, as indicated by the overall movement of the deep valence bands. Such anomaly, suggestive of NEC, is shown to be primarily driven by the lowering in energy of the conduction band as the correlated bandgap reduces. Our finding points to a distinct pathway towards an uncharted territory of NEC featuring bulk correlated metals with unique potential for applications in low-power nanoelectronics and novel metamaterials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fermi surface and band structure of (Sr1−xLax)3Ir2O7 forx = 0.057.
Figure 2: Chemical potential shift on electron doping in (Sr1−xLax)3Ir2O7.
Figure 3: Doping evolution of the valence band top and conduction band bottom of (Sr1−xLax)3Ir2O7.
Figure 4: Doping evolution of the band structure of (Sr1−xLax)3Ir2O7 and its comparison with Nd2−xCexCuO4.

Similar content being viewed by others

References

  1. Baughman, R. H., Stafström, S., Cui, C. & Dantas, S. O. Materials with negative compressibilities in one or more dimensions. Science 279, 1522–1524 (1998).

    Article  CAS  Google Scholar 

  2. Lakes, R. S., Lee, T., Bersie, A. & Wang, Y. C. Extreme damping in composite materials with negative-stiffness inclusions. Nature 410, 565–567 (2001).

    Article  CAS  Google Scholar 

  3. Jaglinski, T., Kochmann, D., Stone, D. & Lakes, R. S. Composite materials with viscoelastic stiffness greater than diamond. Science 315, 620–622 (2007).

    Article  CAS  Google Scholar 

  4. Liu, Z. et al. P. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    Article  CAS  Google Scholar 

  5. Fang, N. et al. Ultrasonic metamaterials with negative modulus. Nature Mater. 5, 452–456 (2006).

    CAS  Google Scholar 

  6. Kravchenko, S. V., Rinberg, D. A., Semenchinsky, S. G. & Pudalov, V. M. Evidence for the influence of electron–electron interaction on the chemical potential of the two-dimensional electron gas. Phys. Rev. B 42, 3741–3744 (1990).

    Article  CAS  Google Scholar 

  7. Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Negative compressibility of interacting two-dimensional electron and quasiparticle gases. Phys. Rev. Lett. 68, 674–677 (1992).

    Article  CAS  Google Scholar 

  8. Li, L. et al. Very large capacitance enhancement in a two-dimensional electron system. Science 332, 825–828 (2011).

    Article  CAS  Google Scholar 

  9. Yu, G. L. et al. Interaction phenomena in graphene seen through quantum capacitance. Proc. Natl Acad. Sci. USA 110, 3282–3286 (2013).

    Article  CAS  Google Scholar 

  10. Lee, K. et al. Chemical potential and quantum Hall ferromagnetism in bilayer graphene. Science 345, 58–61 (2014).

    Article  CAS  Google Scholar 

  11. Ilani, S., Donev, L. A. K., Kindermann, M. & McEuen, P. L. Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nature Phys. 2, 687–691 (2006).

    Article  CAS  Google Scholar 

  12. Kim, B. J. et al. Novel Jeff = 1/2 Mott state induced by relativistic spin–orbit coupling in Sr2IrO4 . Phys. Rev. Lett. 101, 076402 (2008).

    Article  CAS  Google Scholar 

  13. Moon, S. J. et al. Dimensionality-controlled insulator-metal transition and correlated metallic state in 5d transition metal oxides Srn+1IrnO3n+1 (n = 1, 2, and ). Phys. Rev. Lett. 101, 226402 (2008).

    Article  CAS  Google Scholar 

  14. Ishii, K. et al. Momentum-resolved electronic excitations in the Mott insulator Sr2IrO4 studied by resonant inelastic x-ray scattering. Phys. Rev. B 83, 115121 (2011).

    Article  Google Scholar 

  15. Arita, R., Kunes, J., Kozhevnikov, A. V., Eguiluz, A. G. & Imada, M. Ab initio studies on the interplay between spin–orbit interaction and Coulomb correlation in Sr2IrO4 and Ba2IrO4 . Phys. Rev. Lett. 108, 086403 (2012).

    Article  CAS  Google Scholar 

  16. Li, L. et al. Tuning the Jeff = 1/2 insulating state via electron doping and pressure in the double-layered iridate Sr3Ir2O7 . Phys. Rev. B 87, 235127 (2013).

    Article  Google Scholar 

  17. Wang, Q. et al. Dimensionality-controlled Mott transition and correlation effects in single-layer and bilayer perovskite iridates. Phys. Rev. B 87, 245109 (2013).

    Article  Google Scholar 

  18. King, P. D. C. et al. Spectroscopic indications of polaronic behavior of the strong spin–orbit insulator Sr3Ir2O7 . Phys. Rev. B 87, 241106 (2013).

    Article  Google Scholar 

  19. Okada, Y. et al. Imaging the evolution of metallic states in a correlated iridate. Nature Mater. 12, 707–713 (2013).

    Article  CAS  Google Scholar 

  20. Dhital, C. et al. Spin ordering and electronic texture in the bilayer iridate Sr3Ir2O7 . Phys. Rev. B 86, 100401(R) (2012).

    Article  Google Scholar 

  21. Shen, K. M. et al. Missing quasiparticles and the chemical potential puzzle in the doping evolution of the cuprate superconductors. Phys. Rev. Lett. 93, 267002 (2004).

    Article  CAS  Google Scholar 

  22. Yagi, H. et al. Chemical potential shift in lightly doped to optimally doped Ca2−xNaxCuO2Cl2 . Phys. Rev. B 73, 172503 (2006).

    Article  Google Scholar 

  23. Fujimori, A. et al. Core-level photoemission measurements of the chemical potential shift as a probe of correlated electron systems. J. Electron. Spectrosc. Relat. Phenom. 124, 127–138 (2002).

    Article  CAS  Google Scholar 

  24. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  CAS  Google Scholar 

  25. Lee, J. S., Krockenberger, Y., Takahashi, K. S., Kawasaki, M. & Tokura, Y. Insulator-metal transition driven by change of doping and spin–orbit interaction in Sr2IrO4 . Phys. Rev. B 85, 035101 (2012).

    Article  Google Scholar 

  26. Armitage, N. P., Fournier, P. & Greene, R. L. Progress and perspectives on electron-doped cuprates. Rev. Mod. Phys. 82, 2421–2487 (2010).

    Article  CAS  Google Scholar 

  27. Das, T., Markiewicz, R. S. & Bansil, A. Strong correlation effects and optical conductivity in electron-doped cuprates. Europhys. Lett. 96, 27004 (2011).

    Article  Google Scholar 

  28. Caprara, S., Peronaci, F. & Grilli, M. Intrinsic instability of electronic interfaces with strong Rashba coupling. Phys. Rev. Lett. 109, 196401 (2012).

    Article  CAS  Google Scholar 

  29. Veillette, M., Bazaliy, Y. B., Berlinsky, A. J. & Kallin, C. Stripe formation by long range interactions within SO(5) theory. Phys. Rev. Lett. 83, 2413–2416 (1999).

    Article  CAS  Google Scholar 

  30. Kopp, T. & Mannhart, J. Calculation of the capacitances of conductors: Perspectives for the optimization of electronic devices. J. Appl. Phys. 106, 064504 (2009).

    Article  Google Scholar 

  31. Liu, G-Q., Antonov, V. N., Jepsen, O. & Andersen, O. K. Coulomb-enhanced spin-orbit splitting: The missing piece in the Sr2RhO4 puzzle. Phys. Rev. Lett. 101, 026408 (2008).

    Article  Google Scholar 

  32. Van de Walle, C. G. & Martin, R. M. “Absolute” deformation potentials: Formulation and ab initio calculations for semiconductors. Phys. Rev. Lett. 62, 2028–2031 (1989).

    Article  CAS  Google Scholar 

  33. Li, Q., Hwang, E. H. & Das Sarma, S. Temperature-dependent compressibility in graphene and two-dimensional systems. Phys. Rev. B 84, 235407 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. S. Burch, T-R. Chang, Y-H. Chu, A. Fujimori, Z. Hussain, S. A. Kivelson, H. Lin, V. Madhavan, Z-X. Shen, Q. Si, C. M. Varma, Z-Y. Weng, H. Yao and X. J. Zhou for discussions, and K. Tanaka for measuring sample work functions at UVSOR, Japan. The work at Boston College was supported by a BC start-up fund (J.H., R-H.H.), the US NSF CAREER Awards DMR-1454926 (R-H.H., in part) and DMR-1056625 (T.H., C.D., X.C., S.D.W.), NSF Graduate Research Fellowship GRFP-5100141 (T.R.M.), DOE DE-SC0002554 and DE-FG02-99ER45747 (Z.W.) and the W. M. Keck Foundation (M.J.N.). The work at Northeastern University (NU) was supported by the DOE, BES Contract No. DE-FG02-07ER46352, and benefited from NU’s ASCC and the allocation of supercomputer time at NERSC through DOE grant DE-AC02-05CH11231. Photoemission experiments were performed at the SSRL and ALS, supported respectively by the US DOE BES Contract Nos. DE-AC02-76SF00515 and DE-AC02-05CH11231, at HSRC and SPring-8 (preliminary) with the approval of Proposal Nos 14-A-1 and 2014B1501.

Author information

Authors and Affiliations

Authors

Contributions

J.H. and T.H. contributed equally to this work. J.H. and R-H.H. proposed and designed the research. J.H. and T.R.M. carried out the ARPES measurements with help from Y.H., J.D.D., S-K.M., Q.L. and H.P. T.H., C.D. and X.C. grew the samples. T.H., J.H. and T.R.M. characterized the samples with EDS. H.H. and R.S.M. performed the first-principles calculations and, along with A.B. and K.K., provided theoretical guidance. M.H., D.H.L., S-K.M., M.A. and K.S. maintained the experimental facilities. J.H. analysed the data with help from Y.Z. J.H. and R-H.H. wrote the paper with key inputs from Z.W., Y.H., S.D.W., A.B. and R.S.M. R-H.H., S.D.W., M.J.N. and A.B. are responsible for project direction, planning and infrastructure.

Corresponding author

Correspondence to Rui-Hua He.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3844 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Hogan, T., Mion, T. et al. Spectroscopic evidence for negative electronic compressibility in a quasi-three-dimensional spin–orbit correlated metal. Nature Mater 14, 577–582 (2015). https://doi.org/10.1038/nmat4273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing