Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-layer ionic conduction on carboxyl-terminated silane monolayers patterned by constructive lithography

Subjects

Abstract

Ionic transport plays a central role in key technologies relevant to energy, and information processing and storage, as well as in the implementation of biological functions in living organisms. Here, we introduce a supramolecular strategy based on the non-destructive chemical patterning of a highly ordered self-assembled monolayer that allows the reproducible fabrication of ion-conducting surface patterns (ion-conducting channels) with top –COOH functional groups precisely definable over the full range of length scales from nanometre to centimetre. The transport of a single layer of selected metal ions and the electrochemical processes related to their motion may thus be confined to predefined surface paths. As a generic solid ionic conductor that can accommodate different mobile ions in the absence of any added electrolyte, these ion-conducting channels exhibit bias-induced competitive transport of different ionic species. This approach offers unprecedented opportunities for the realization of designed ion-conducting systems with nanoscale control, beyond the inherent limitations posed by available ionic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation (not to scale) of proposed bias-driven ionic transport in the different ion-conducting pattern configurations investigated in this study.
Figure 2: Experimental results obtained with ion-conducting macro-channels with silver electrodes (set-up as in Fig. 1b).
Figure 3: Experimental results obtained with ion-conducting macro-channels with titanium electrodes and with a titanium and a silver electrode.
Figure 4: Temperature dependence of the sheet conductance σs (in Ω−1) of ion-conducting macro-channels with silver or titanium electrodes.
Figure 5: Experimental results obtained with the ion-conducting macro–micro–nano-channel (set-up as in Fig. 1c).
Figure 6: Experimental results obtained with nano-channels directly contacted by silver electrodes (set-up as in Fig. 1d).

Similar content being viewed by others

References

  1. Owens, B. B. Solid state electrolytes: Overview of materials and applications during the last third of the twentieth century. J. Power Sources 90, 2–8 (2000).

    Article  CAS  Google Scholar 

  2. Riess, I. Mixed ionic–electronic conductors—material properties and applications. Solid State Ion. 157, 1–17 (2003).

    Article  CAS  Google Scholar 

  3. Tuller, H. L. Ionic conduction in nanocrystalline materials. Solid State Ion. 131, 143–157 (2000).

    Article  CAS  Google Scholar 

  4. Guo, X. & Maier, J. Ionically conducting two-dimensional heterostructures. Adv. Mater. 21, 2619–2631 (2009).

    Article  CAS  Google Scholar 

  5. Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005).

    Article  CAS  Google Scholar 

  6. Livshits, E. et al. New insights into structural and electrochemical properties of anisotropic polymer electrolytes. Electrochim. Acta 50, 3805–3814 (2005).

    Article  CAS  Google Scholar 

  7. Ratner, M. A. & Shriver, D. F. Ion transport in solvent-free polymers. Chem. Rev. 88, 109–124 (1988).

    Article  CAS  Google Scholar 

  8. Schuster, M. F. H. & Meyer, W. H. Anhydrous proton-conducting polymers. Annu. Rev. Mater. Res. 33, 233–261 (2003).

    Article  CAS  Google Scholar 

  9. Armand, M. & Tarascon, J-M. Building better batteries. Nature 451, 652–657 (2008).

    CAS  Google Scholar 

  10. Tuller, H. L., Litzelman, S. J. & Jung, W. Micro-ionics: Next generation power sources. Phys. Chem. Chem. Phys. 11, 3023–3034 (2009).

    Article  CAS  Google Scholar 

  11. Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005).

    Article  CAS  Google Scholar 

  12. Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories—nanoionic mechanisms, challenges. Adv. Mater. 21, 2632–2663 (2009).

    Article  CAS  Google Scholar 

  13. Nakanishi, H. et al. Dynamic internal gradients control and direct electric currents within nanostructured materials. Nature Nanotech. 6, 740–746 (2011).

    Article  CAS  Google Scholar 

  14. Valov, I., Waser, R., Jameson, J. R. & Kozicki, M. N. Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011).

    Article  Google Scholar 

  15. Feinerman, O., Rotem, A. & Moses, E. Reliable neuronal logic devices from patterned hippocampal cultures. Nature Phys. 4, 967–973 (2008).

    Article  CAS  Google Scholar 

  16. Maoz, R., Frydman, E., Cohen, S. R. & Sagiv, J. Constructive nanolithography: Inert monolayers as patternable templates for in-situ nanofabrication of metal–semiconductor–organic surface structures—a generic approach. Adv. Mater. 12, 725–731 (2000).

    Article  CAS  Google Scholar 

  17. Liu, S., Maoz, R. & Sagiv, J. Planned nanostructures of colloidal gold via self-assembly on hierarchically assembled organic bilayer template patterns with in-situ generated terminal amino functionality. Nano Lett. 4, 845–851 (2004).

    Article  CAS  Google Scholar 

  18. Zeira, A., Chowdhury, D., Maoz, R. & Sagiv, J. Contact electrochemical replication of hydrophilic–hydrophobic monolayer patterns. ACS Nano 2, 2554–2568 (2008).

    Article  CAS  Google Scholar 

  19. Zeira, A., Berson, J., Feldman, I., Maoz, R. & Sagiv, J. A bipolar electrochemical approach to constructive lithography: Metal/monolayer patterns via consecutive site-defined oxidation and reduction. Langmuir 27, 8562–8575 (2011).

    Article  CAS  Google Scholar 

  20. Berson, J., Zeira, A., Maoz, R. & Sagiv, J. Parallel- and serial-contact electrochemical metallization of monolayer nanopatterns: A versatile synthetic tool en route to bottom-up assembly of electric nanocircuits. Beilstein J. Nanotech. 3, 134–143 (2012).

    Article  Google Scholar 

  21. Garcia, R., Knoll, A. W. & Riedo, E. Advanced scanning probe lithography. Nature Nanotech. 9, 577–587 (2014).

    Article  CAS  Google Scholar 

  22. Maoz, R., Sagiv, J., Degenhardt, D., Möhwald, H. & Quint, P. Hydrogen-bonded multilayers of self-assembling silanes: Structure elucidation by combined Fourier transform infra-red spectroscopy and X-ray scattering techniques. Supramol. Sci. 2, 9–24 (1995).

    Article  CAS  Google Scholar 

  23. Maoz, R., Yam, R., Berkovic, G. & Sagiv, J. in Thin Films Vol. 20 (ed. Ulman, A.) 41–68 (Academic Press, 1995).

    Google Scholar 

  24. Wen, K. et al. Postassembly chemical modification of a highly ordered organosilane multilayer: New insights into the structure, bonding, and dynamics of self-assembling silane monolayers. ACS Nano 2, 579–599 (2008).

    Article  CAS  Google Scholar 

  25. Gericke, A. & Hühnerfuss, H. The effect of cations on the order of saturated fatty acid monolayers at the air-water interface as determined by infrared reflection-absorption spectrometry. Thin Solid Films 245, 74–82 (1994).

    Article  CAS  Google Scholar 

  26. Tao, Y-T. Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum. J. Am. Chem. Soc. 115, 4350–4358 (1993).

    Article  CAS  Google Scholar 

  27. Smith, E. L., Alves, C. A., Anderegg, J. W., Porter, M. D. & Siperko, L. M. Deposition of metal overlayers at end-group-functionalized thiolate monolayers adsorbed on Au. 1. Surface and interfacial chemical characterization of deposited Cu overlayers at carboxylic acid-terminated structures. Langmuir 8, 2707–2714 (1992).

    Article  CAS  Google Scholar 

  28. Gershevitz, O., Osnis, A. & Sukenik, C. N. Interfacial chemistry on carboxylate-functionalized monolayer assemblies. Isr. J. Chem. 45, 321–336 (2005).

    Article  CAS  Google Scholar 

  29. Maoz, R., Matlis, S., DiMasi, E., Ocko, B. M. & Sagiv, J. Self-replicating amphiphilic monolayers. Nature 384, 150–153 (1996).

    Article  CAS  Google Scholar 

  30. Maoz, R. & Sagiv, J. Targeted self-replication of silane multilayers. Adv. Mater. 10, 580–584 (1998).

    Article  CAS  Google Scholar 

  31. Conway, B. E. & Bockris, J. O’M. Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal. J. Chem. Phys. 26, 532–541 (1957).

    Article  CAS  Google Scholar 

  32. Kleperis, J. et al. Electrochemical behavior of metal hydrides. J. Solid State Electrochem. 5, 229–249 (2001).

    Article  CAS  Google Scholar 

  33. Boulas, C., Davidovits, J. V., Rondelez, F. & Vuillaume, D. Suppression of charge carrier tunneling through organic self-assembled monolayers. Phys. Rev. Lett. 76, 4797–4800 (1996).

    Article  CAS  Google Scholar 

  34. Chowdhury, D., Maoz, R. & Sagiv, J. Wetting driven self-assembly as a new approach to template-guided fabrication of metal nanopatterns. Nano Lett. 7, 1770–1778 (2007).

    Article  CAS  Google Scholar 

  35. Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995).

    Article  CAS  Google Scholar 

  36. Forouzan, F. & Bard, A. J. Evidence for faradaic processes in scanning probe microscopy on mica in humid air. J. Phys. Chem. B 101, 10876–10879 (1997).

    Article  CAS  Google Scholar 

  37. Takahashi, T., Yamamoto, O., Yamada, S. & Hayashi, S. Solid-state ionics: High copper ion conductivity of the system CuCl–CuI–RbCl. J. Electrochem. Soc. 126, 1654–1658 (1979).

    Article  CAS  Google Scholar 

  38. Staunton, E., Andreev, Y. G. & Bruce, P. G. Factors influencing the conductivity of crystalline polymer electrolytes. Faraday Discuss. 134, 143–156 (2007).

    Article  CAS  Google Scholar 

  39. Zhang, C. et al. Alkali metal crystalline polymer electrolytes. Nature Mater. 8, 580–584 (2009).

    Article  Google Scholar 

  40. Kamaya, N. et al. A lithium superionic conductor. Nature Mater. 10, 682–686 (2011).

    Article  CAS  Google Scholar 

  41. Whittingham, M. S. & Huggins, R. A. Transport properties of silver beta alumina. J. Electrochem. Soc. 118, 1–6 (1971).

    Article  CAS  Google Scholar 

  42. Rice, M. J. & Roth, W. L. Ionic transport in super ionic conductors: A theoretical model. J. Solid State Chem. 4, 294–310 (1972).

    Article  CAS  Google Scholar 

  43. Maoz, R., Frydman, E., Cohen, S. R. & Sagiv, J. Constructive nanolithography: Site-defined silver self-assembly on nanoelectrochemically patterned monolayer templates. Adv. Mater. 12, 424–429 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Israel Science Foundation (grant No. 931/12) and G. M. J. Schmidt Minerva Center of Supramolecular Architectures. We are grateful to I. Lubomirsky (Weizmann Inst.), E. Gileadi (Tel Aviv Univ.), I. Riess (Technion) and A. Yochelis (Ben-Gurion University of the Negev) for illuminating discussions, H. Cohen for the XPS measurements, G. Gotesman for assistance in the SEM imaging, B. Pasmantirer for assistance in the design of the probe station and equipment for the preparation of electrodes and macro-channels, and O. Westmark for assistance with the graphical presentation.

Author information

Authors and Affiliations

Authors

Contributions

J.B.: AFM monolayer nanopatterning (CNL) and imaging, AFM electrical imaging, SEM imaging, analysis and summary of AFM and SEM data. D.B.: AFM monolayer nanopatterning (CNL) and imaging, design of the probe station and of electrochemical measurement set-ups, electrical measurements, analysis and summary of AFM, electrochemical and electrical data. A.Z.: AFM monolayer nanopatterning (CNL), monolayer macropatterning (CEP). A.Y.: development of non-destructive electron-beam deposition procedures for the fabrication of the electrodes and macro-channels. R.M.: supervision of the research, initiation and design of experimental set-ups, monolayer assembly and characterization, monolayer macropatterning (CEP), FTIR measurements, electrical measurements, analysis and summary of FTIR and electrical data. J.S.: initiation and supervision of the research, overall analysis and summary of the experimental results, writing of the manuscript. All authors discussed the results and commented on their interpretation.

Corresponding authors

Correspondence to Rivka Maoz or Jacob Sagiv.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berson, J., Burshtain, D., Zeira, A. et al. Single-layer ionic conduction on carboxyl-terminated silane monolayers patterned by constructive lithography. Nature Mater 14, 613–621 (2015). https://doi.org/10.1038/nmat4254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing