Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors

Abstract

The remarkable performance of lead halide perovskites in solar cells can be attributed to the long carrier lifetimes and low non-radiative recombination rates, the same physical properties that are ideal for semiconductor lasers. Here, we show room-temperature and wavelength-tunable lasing from single-crystal lead halide perovskite nanowires with very low lasing thresholds (220 nJ cm−2) and high quality factors (Q 3,600). The lasing threshold corresponds to a charge carrier density as low as 1.5 × 1016 cm−3. Kinetic analysis based on time-resolved fluorescence reveals little charge carrier trapping in these single-crystal nanowires and gives estimated lasing quantum yields approaching 100%. Such lasing performance, coupled with the facile solution growth of single-crystal nanowires and the broad stoichiometry-dependent tunability of emission colour, makes lead halide perovskites ideal materials for the development of nanophotonics, in parallel with the rapid development in photovoltaics from the same materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural characterization of single-crystal CH3NH3PbX3 NWs.
Figure 2: Near-infrared lasing from CH3NH3PbI3 NWs.
Figure 3: Visible lasing from CH3NH3PbBr3 NWs.
Figure 4: Tunable lasing from mixed perovskite NWs.
Figure 5: Emission polarization of the CH3NH3PbI3 NW laser.

Similar content being viewed by others

References

  1. Yan, R. X., Gargas, D. & Yang, P. D. Nanowire photonics. Nature Photon. 3, 569–576 (2009).

    Article  CAS  Google Scholar 

  2. Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    Article  CAS  Google Scholar 

  3. Johnson, J. C. et al. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–110 (2002).

    Article  CAS  Google Scholar 

  4. Qian, F. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Mater. 7, 701–706 (2008).

    Article  CAS  Google Scholar 

  5. Agarwal, R., Barrelet, C. J. & Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 5, 917–920 (2005).

    Article  CAS  Google Scholar 

  6. Pan, A. et al. Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9, 784–788 (2009).

    Article  CAS  Google Scholar 

  7. Saxena, D. et al. Optically pumped room-temperature GaAs nanowire lasers. Nature Photon. 7, 963–968 (2013).

    Article  CAS  Google Scholar 

  8. Hua, B., Motohisa, J., Kobayashi, Y., Hara, S. & Fukui, T. Single GaAs/GaAsP coaxial core-shell nanowire lasers. Nano Lett. 9, 112–116 (2009).

    Article  CAS  Google Scholar 

  9. Chen, R. et al. Nanolasers grown on silicon. Nature Photon. 5, 170–175 (2011).

    Article  CAS  Google Scholar 

  10. Wang, Z. et al. Polytypic InP nanolaser monolithically integrated on (001) silicon. Nano Lett. 13, 5063–5069 (2013).

    Article  CAS  Google Scholar 

  11. Mayer, B. et al. Lasing from individual GaAs–AlGaAs core–shell nanowires up to room temperature. Nature Commun. 4, 2931 (2013).

    Article  Google Scholar 

  12. Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

    Article  CAS  Google Scholar 

  13. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  Google Scholar 

  14. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  CAS  Google Scholar 

  15. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  CAS  Google Scholar 

  16. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  CAS  Google Scholar 

  17. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  CAS  Google Scholar 

  18. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  CAS  Google Scholar 

  19. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    Article  CAS  Google Scholar 

  20. Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    Article  CAS  Google Scholar 

  21. Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotech. 9, 687–692 (2014).

    Article  CAS  Google Scholar 

  22. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Mater. 13, 476–480 (2014).

    Article  CAS  Google Scholar 

  23. Sutherland, B. R., Hoogland, S., Adachi, M. M., Wong, C. T. & Sargent, E. H. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 8, 10947–10952 (2014).

    Article  CAS  Google Scholar 

  24. Zhang, Q., Ha, S. T., Liu, X., Sum, T. C. & Xiong, Q. Room-temperature near-infrared high-q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014).

    Article  CAS  Google Scholar 

  25. Meng, F., Morin, S. A., Forticaux, A. & Jin, S. Screw dislocation driven growth of nanomaterials. Acc. Chem. Res. 46, 1616–1626 (2013).

    Article  CAS  Google Scholar 

  26. Poglitsch, A. & Weber, D. Dynamic disorder in methylammonium-trihalogeno-plumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987).

    Article  CAS  Google Scholar 

  27. Liang, K., Mitzi, D. B. & Prikas, M. T. Synthesis and characterization of organic–inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem. Mater. 10, 403–411 (1998).

    Article  CAS  Google Scholar 

  28. Morin, S. A., Bierman, M. J., Tong, J. & Jin, S. Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 328, 476–480 (2010).

    Article  CAS  Google Scholar 

  29. Bierman, M. J., Lau, Y. K. A., Kvit, A. V., Schmitt, A. L. & Jin, S. Dislocation-driven nanowire growth and Eshelby Twist. Science 320, 1060–1063 (2008).

    Article  CAS  Google Scholar 

  30. Li, L. et al. Facile solution synthesis of α-FeF3 3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application. Nano Lett. 12, 724–731 (2012).

    Article  CAS  Google Scholar 

  31. Casperson, L. W. Threshold characteristics of multimode laser oscillators. J. Appl. Phys. 46, 5194–5201 (1975).

    Article  CAS  Google Scholar 

  32. van Vugt, L. K., Ruhle, S. & Vanmaekelbergh, D. Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. Nano Lett. 6, 2707–2711 (2006).

    Article  CAS  Google Scholar 

  33. Johnson, J. C., Yan, H. Q., Yang, P. D. & Saykally, R. J. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 107, 8816–8828 (2003).

    Article  CAS  Google Scholar 

  34. Eliseev, P. G. & Shuikin, N. N. Single-mode and single-frequency injection lasers (review). Sov. J. Quant. Electron. 3, 181–192 (1973).

    Article  Google Scholar 

  35. Ning, C. Z. in Semiconductors and Semimetals Vol. 86 (eds Coleman, J. J., Bryce, A. C. & Jagadish, C.) 455–486 (Academic Press, 2012).

    Google Scholar 

  36. Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

    Article  CAS  Google Scholar 

  37. Wu, X. et al. Trap States in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089–2096 (2015).

    Article  CAS  Google Scholar 

  38. Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells. J. Phys. Chem. Lett. 5, 2903–2909 (2014).

    Article  CAS  Google Scholar 

  39. Saba, M. et al. Correlated electron–hole plasma in organometal perovskites. Nature Commun. 5, 5049 (2014).

    Article  CAS  Google Scholar 

  40. Svelto, O. Principles of Lasers 4th edn (Springer, 1998).

    Book  Google Scholar 

  41. Li, H. Y., Ruhle, S., Khedoe, R., Koenderink, A. F. & Vanmaekelbergh, D. Polarization, microscopic origin, and mode structure of luminescence and lasing from single ZnO nanowires. Nano Lett. 9, 3515–3520 (2009).

    Article  CAS  Google Scholar 

  42. Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    Article  CAS  Google Scholar 

  43. Shan, C. X., Liu, Z. & Hark, S. K. Photoluminescence polarization in individual CdSe nanowires. Phys. Rev. B 74, 153402 (2006).

    Article  Google Scholar 

  44. Collin, R. E. Field Theory of Guided Waves (Wiley-IEEE Press, 1991).

    Google Scholar 

Download references

Acknowledgements

X-Y.Z. acknowledges support by the US Department of Energy under grant No. ER46980 for all lasing and photophysical measurements. S.J. acknowledges support by the Department of Energy under grant No. ER46664 for NW synthesis and characterizations. S.J. is also grateful for the support of an NSF Grant (DMR-1106184) that provided the insights for designing the NW synthesis here. H.Z. thanks C. Nelson for help with experimental set-up and data analysis.

Author information

Authors and Affiliations

Authors

Contributions

H.Z., Y.F., S.J. and X-Y.Z. conceived the idea and designed the experiments. Y.F., F.M. and Q.D. synthesized and characterized the samples. H.Z., X.W. and Z.G. conducted the optical measurements. M.V.G. helped with metal-coated sample preparation and M.T.T. with experimental set-up for lasing measurement. H.Z. analysed the data and performed the simulation. H.Z., Y.F., S.J. and X-Y.Z. wrote the manuscript. All authors discussed the results, interpreted the findings, and reviewed the manuscript.

Corresponding authors

Correspondence to Song Jin or X-Y. Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Fu, Y., Meng, F. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Mater 14, 636–642 (2015). https://doi.org/10.1038/nmat4271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4271

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing