Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhancement of the chemical stability in confined δ-Bi2O3

Abstract

Bismuth-oxide-based materials are the building blocks for modern ferroelectrics1, multiferroics2, gas sensors3, light photocatalysts4 and fuel cells5,6. Although the cubic fluorite δ-phase of bismuth oxide (δ-Bi2O3) exhibits the highest conductivity of known solid-state oxygen ion conductors5, its instability prevents use at low temperature7,8,9,10. Here we demonstrate the possibility of stabilizing δ-Bi2O3 using highly coherent interfaces of alternating layers of Er2O3-stabilized δ-Bi2O3 and Gd2O3-doped CeO2. Remarkably, an exceptionally high chemical stability in reducing conditions and redox cycles at high temperature, usually unattainable for Bi2O3-based materials, is achieved. Even more interestingly, at low oxygen partial pressure the layered material shows anomalous high conductivity, equal or superior to pure δ-Bi2O3 in air. This suggests a strategy to design and stabilize new materials that are comprised of intrinsically unstable but high-performing component materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multilayer structure of MgO/CGO/[ESB/CGO]N.
Figure 2: Arrhenius plots of electrical conductivity measured in the 773–1,048 K temperature range for MgO/CGO/[ESB/CGO]N with N = 1 and 20.
Figure 3: Electrical stability of MgO/CGO/[ESB/CGO]N=20 measured at 823, 873 and 933 K in air.

Similar content being viewed by others

References

  1. Park, B. H. et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401, 682–684 (1999).

    Article  CAS  Google Scholar 

  2. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    Article  CAS  Google Scholar 

  3. Sears, W. M. The gas-sensing properties of sintered bismuth iron molybdate catalyst. Sensors Actuators 19, 351–370 (1989).

    Article  CAS  Google Scholar 

  4. Gurunathan, K. Photocatalytic hydrogen production using transition metal ions-doped-Bi2O3 semiconductor particles. Int. J. Hydrog. Energy 29, 933–940 (2003).

    Article  Google Scholar 

  5. Wachsman, E. D. & Lee, K. T. Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011).

    Article  CAS  Google Scholar 

  6. Azad, A. M., Larose, S. & Akbar, S. A. Bismuth oxide-based solid electrolytes for fuel cells. J. Mater. Sci. 29, 4135–4151 (1994).

    Article  CAS  Google Scholar 

  7. Kharton, V. V., Marques, F. M. B. & Atkinson, A. Transport properties of solid oxide electrolyte ceramics: A brief review. Solid State Ion. 174, 135–149 (2004).

    Article  CAS  Google Scholar 

  8. Shuk, P., Wiemh, H. D., Guth, U., Göpel, W. & Greenblatt, M. Oxide ion conducting solid electrolytes based on Bi2O3 . Solid State Ion. 89, 179–196 (1996).

    Article  CAS  Google Scholar 

  9. Takahashi, T. & Iwahara, H. High oxide ion conduction in sintered oxides of the system Bi2O3-WO3 . J. Appl. Electrochem. 3, 65–72 (1973).

    Article  Google Scholar 

  10. Sammes, N. M., Tompsett, G. A., Nafe, H. & Aldinger, F. Bismuth based oxide electrolytes-structure and ionic conductivity. J. Eur. Ceram. Soc. 19, 1801–1826 (1999).

    Article  CAS  Google Scholar 

  11. Battle, P. D., Catlow, C. R. A., Heap, J. W. & Moroney, L. M. Structural and dynamical studies of δ-Bi2O3 oxide-ion conductors II. A structural comparison of (Bi2O3)1−x(M2O3)x for M = Y, Er and Yb. J. Solid State Chem. 67, 42–50 (1987).

    Article  CAS  Google Scholar 

  12. Jiang, N. & Wachsman, E. D. Structural stability and conductivity of phase-stabilized cubic bismuth oxides. J. Am. Ceram. Soc. 82, 3057–3064 (1999).

    Article  CAS  Google Scholar 

  13. Boivin, J. C. & Thomas, D. Crystal chemistry and electrical properties of bismuth-based mixed oxides. Solid State Ion. 5, 523–525 (1981).

    Article  CAS  Google Scholar 

  14. Boyapati, S., Wachsman, E. D. & Chakoumakos, B. C. Neutron diffraction study of occupancy and positional order of oxygen ions in phase-stabilized cubic bismuth oxides. Solid State Ion. 138, 293–304 (2001).

    Article  CAS  Google Scholar 

  15. Boyapati, S., Wachsman, E. D. & Jiang, N. Effect of oxygen sublattice ordering on interstitial transport mechanism and conductivity activation energies in phase-stabilized cubic bismuth oxide. Solid State Ion. 140, 149–160 (2001).

    Article  CAS  Google Scholar 

  16. Switzer, J. A., Shumsky, M. G. & Bohannan, E. W. Electrodeposited ceramic single crystals. Science 284, 293–296 (1999).

    Article  CAS  Google Scholar 

  17. Lunca Popa, P. et al. Highly oriented δ-Bi2O3 thin films stable at room temperature synthesized by reactive magnetron sputtering. J. Appl. Phys. 113, 046101 (2013).

    Article  Google Scholar 

  18. Laurent, K., Wang, G. Y., Tusseau-Nenez, S. & Leprince-Wang, Y. Structure and conductivity studies of electrodeposited δ-Bi2O3 . Solid State Ion. 178, 1735–1739 (2008).

    Article  CAS  Google Scholar 

  19. Wachsman, E. D., Ball, G. R., Jiang, N. & Stevenson, D. A. Structural and defect studies in solid oxide electrolytes. Solid State Ion. 52, 213–218 (1992).

    Article  CAS  Google Scholar 

  20. Takahashi, T., Esaka, T. & Iwahara, H. Conduction in Bi2O3-based oxide ion conductor under low oxygen pressure. II. Determination of the partial electronic conductivity. J. Appl. Electrochem. 7, 303–308 (1977).

    Article  CAS  Google Scholar 

  21. Takahashi, T., Iwahara, H. & Nagai, Y. High oxide ion conduction in sintered Bi2O3 containing SrO, CaO or La2O3 . J. Appl. Electrochem. 2, 97–104 (1972).

    Article  CAS  Google Scholar 

  22. Park, J. Y., Yoon, H. & Wachsman, E. D. Fabrication and characterization of high-conductivity bilayered electrolytes for intermediate-temperature solid oxide fuel cells. J. Am. Ceram. Soc. 88, 2402–2408 (2005).

    Article  CAS  Google Scholar 

  23. Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nature Mater. 4, 805–815 (2005).

    Article  CAS  Google Scholar 

  24. Steele, B. C. H. Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ion. 129, 95–110 (2000).

    Article  CAS  Google Scholar 

  25. Garcia-Barriocanal, J. et al. Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321, 676–680 (2008).

    Article  CAS  Google Scholar 

  26. Sata, N., Eberl, K., Eberman, K. & Maier, J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408, 946–949 (2000).

    Article  CAS  Google Scholar 

  27. Sanna, S. et al. Enhancement of ionic conductivity in Sm-doped ceria/yttria-stabilized zirconia heteroepitaxial structures. Small 6, 1863–1867 (2010).

    Article  CAS  Google Scholar 

  28. Schweiger, S., Kubicek, M., Messerschmitt, F., Murer, C. & Rupp, J. L. M. A. Microdot multilayer oxide device: Let us tune the strain-ionic transport interaction. ACS Nano 8, 5032–5048 (2014).

    Article  CAS  Google Scholar 

  29. Ni, D. W. et al. Densification of highly defective ceria by high temperatures controlled reoxidation. J. Electrochem. Soc. 161, F1–F7 (2014).

    Article  Google Scholar 

  30. Verkerk, M. J., Van de Velde, G. M. H. & Burggraaf, A. J. Structure and ionic conductivity of Bi2O3 substituted with lanthanide oxides. J. Phys. Chem. Solids 43, 1129–1136 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. R. Graves for valuable suggestions and discussions and for critically reading the manuscript. O. Balmes is also acknowledged for his valuable help during the experiments at beam line ID03 at the ESRF. We also appreciate the help of E. Abdellahi with the preparation of (S)TEM specimens. We gratefully acknowledge The Danish Council for Independent Research |Natural Sciences, for travel support in connection with the synchrotron experiments, through the DANSCATT grant. The A.P. Møller and Chastine Mc-Kinney Møller Foundation are gratefully acknowledged for their contribution towards the establishment of the Center for Electron Nanoscopy in the Technical University of Denmark.

Author information

Authors and Affiliations

Authors

Contributions

S.S., V.E., S.L. and N.P. designed this project. V.E. elaborated the concept and S.S. developed the heterostructure layered architectures. S.S. deposited the thin films by PLD. S.S. and J.W.A. performed structural characterization by XRD and synchrotron light experiments. S.S. and M.C. performed structural characterization by high-temperature XRD. W.Z., T.K. and S.B.S. performed STEM and HRTEM characterizations. S.S., V.E. and J.H. performed the electrical characterization. S.S., V.E. and N.P. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Nini Pryds.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1510 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanna, S., Esposito, V., Andreasen, J. et al. Enhancement of the chemical stability in confined δ-Bi2O3. Nature Mater 14, 500–504 (2015). https://doi.org/10.1038/nmat4266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing