Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals

Abstract

On the basis of successful first-principles predictions of new functional ferroelectric materials, a number of new ferroelectrics have been experimentally discovered. Using trilinear coupling of two types of octahedron rotation, hybrid improper ferroelectricity has been theoretically predicted in ordered perovskites and the Ruddlesden–Popper compounds (Ca3Ti2O7, Ca3Mn2O7 and (Ca/Sr/Ba)3(Sn/Zr/Ge)2O7). However, the ferroelectricity of these compounds has never been experimentally confirmed and even their polar nature has been under debate. Here we provide the first experimental demonstration of room-temperature switchable polarization in bulk crystals of Ca3Ti2O7, as well as Sr-doped Ca3Ti2O7. Furthermore, (Ca, Sr)3Ti2O7 is found to exhibit an intriguing ferroelectric domain structure resulting from orthorhombic twins and (switchable) planar polarization. The planar domain structure accompanies abundant charged domain walls with conducting head-to-head and insulating tail-to-tail configurations, which exhibit a conduction difference of two orders of magnitude. These discoveries provide new research opportunities, not only for new stable ferroelectrics of Ruddlesden–Popper compounds, but also for meandering conducting domain walls formed by planar polarization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Planar electric polarization of Ca3−xSrxTi2O7 single crystals at room temperature.
Figure 2: Abundant ferroelectric (FE) and ferroelastic (FA) domain walls (DWs).
Figure 3: Statistical analysis of the angular distribution of ferroelectric (FE) and ferroelastic (FA) domain walls (DWs).
Figure 4: Angular dependence of the conductance of ferroelectric (FE) and ferroelastic (FA) domain walls (DWs).

Similar content being viewed by others

References

  1. Ad-hoc interagency Group on Advanced Materials, Materials Genome Initiative for Global Competitiveness;www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf (2011).

  2. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nature Mater. 12, 191–201 (2013).

    Article  CAS  Google Scholar 

  3. Fennie, C. J. & Rabe, K. M. Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys. Rev. Lett. 97, 267602 (2006).

    Article  Google Scholar 

  4. Fennie, C. Ferroelectrically induced weak ferromagnetism by design. Phys. Rev. Lett. 100, 167203 (2008).

    Article  Google Scholar 

  5. Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008).

    Article  CAS  Google Scholar 

  6. Birol, T., Benedek, N. A. & Fennie, C. J. Interface control of emergent ferroic order in Ruddlesden–Popper Srn+1TinO3n+1 . Phys. Rev. Lett. 107, 257602 (2011).

    Article  Google Scholar 

  7. Roy, A., Bennett, J. W., Rabe, K. M. & Vanderbilt, D. Half-Heusler semiconductors as piezoelectrics. Phys. Rev. Lett. 109, 037602 (2012).

    Article  Google Scholar 

  8. Varga, T. et al. Coexistence of weak ferromagnetism and ferroelectricity in the high pressure LiNbO3-type phase of FeTiO3 . Phys. Rev. Lett. 103, 047601 (2009).

    Article  CAS  Google Scholar 

  9. Lee, J. H. et al. A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature 466, 954–958 (2010).

    Article  CAS  Google Scholar 

  10. Lee, C. H. et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 502, 532–536 (2013).

    Article  CAS  Google Scholar 

  11. Biegalski, M. D. et al. Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates. Appl. Phys. Lett. 88, 192907 (2006).

    Article  Google Scholar 

  12. Pertsev, N., Tagantsev, A. & Setter, N. Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys. Rev. B 61, R825–R829 (2000).

    Article  CAS  Google Scholar 

  13. Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).

    Article  CAS  Google Scholar 

  14. Cheong, S. W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  15. Benedek, N. A. & Fennie, C. J. Hybrid improper ferroelectricity: A mechanism for controllable polarization–magnetization coupling. Phys. Rev. Lett. 106, 107204 (2011).

    Article  Google Scholar 

  16. Benedek, N. A., Mulder, A. T. & Fennie, C. J. Polar octahedral rotations: A path to new multifunctional materials. J. Solid State Chem. 195, 11–20 (2012).

    Article  CAS  Google Scholar 

  17. Mulder, A. T., Benedek, N. A., Rondinelli, J. M. & Fennie, C. J. Turning ABO3 antiferroelectrics into ferroelectrics: Design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden–Popper compounds. Adv. Funct. Mater. 23, 4810–4820 (2013).

    CAS  Google Scholar 

  18. Cohen, R. & Krakauer, H. Lattice dynamics and origin of ferroelectricity in BaTiO3: Linearized-augmented-plane-wave total-energy calculations. Phys. Rev. B 42, 6416–6423 (1990).

    Article  CAS  Google Scholar 

  19. Waghmare, U. V. & Rabe, K. M. Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO3 . Phys. Rev. B 55, 6161–6173 (1997).

    Article  CAS  Google Scholar 

  20. Kumagai, Y. & Spaldin, N. A. Structural domain walls in polar hexagonal manganites. Nature Commun. 4, 1540 (2013).

    Article  Google Scholar 

  21. Zhu, W. et al. Electrically induced decrease of magnetization in Ca3Mn2O7 . Appl. Phys. Lett. 101, 192407 (2012).

    Article  Google Scholar 

  22. Green, M. A., Prassides, K., Day, P. & Neumann, D. A. Structure of the n = 2 and n = member of the Ruddlesden–Popper series, Srn+1SnnO3n+1 . Int. J. Inorg. Mater. 2, 35–41 (2000).

    Article  CAS  Google Scholar 

  23. Lobanov, M. V. et al. Crystal and magnetic structure of the Ca3Mn2O7 Ruddlesden–Popper phase: Neutron and synchrotron x-ray diffraction study. J. Phys. Condens. Matter 16, 5339–5348 (2004).

    Article  CAS  Google Scholar 

  24. Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr. B 28, 3384–3392 (1972).

    Article  CAS  Google Scholar 

  25. Elcombe, M. M. et al. Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7 . Acta Crystallogr. B 47, 305–314 (1991).

    Article  Google Scholar 

  26. Battle, P. D. et al. Neutron diffraction study of the structural and electronic properties of Sr2HoMn2O7 and Sr2YMn2O7 . Chem. Mater. 9, 3136–3143 (1997).

    Article  CAS  Google Scholar 

  27. Cahn, R. W. Twinned crystals. Adv. Phys. 3, 363–445 (1956).

    Article  Google Scholar 

  28. Tanaka, M. & Honjo, G. Electron optical studies of barium titanate single crystal films. J. Phys. Soc. Jpn 19, 954–970 (1964).

    Article  CAS  Google Scholar 

  29. Randall, C. A., Barber, D. J. & Whatmore, R. W. Ferroelectric domain configurations in a modified-PZT ceramic. J. Mater. Sci. 22, 925–931 (1987).

    Article  CAS  Google Scholar 

  30. Zanolli, Z., Wojdeł, J. C., Íñiguez, J. & Ghosez, P. Electric control of the magnetization in BiFeO3/LaFeO3 superlattices. Phys. Rev. B 88, 060102 (2013).

    Article  Google Scholar 

  31. Harris, A. B. Symmetry analysis for the Ruddlesden–Popper systems Ca3Mn2O7 and Ca3Ti2O7 . Phys. Rev. B 84, 064116 (2011).

    Article  Google Scholar 

  32. Jo, J. Y. et al. Coercive fields in ultrathin BaTiO3 capacitors. Appl. Phys. Lett. 89, 232909 (2006).

    Article  Google Scholar 

  33. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    Article  CAS  Google Scholar 

  34. Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nature Mater. 11, 284–288 (2012).

    Article  CAS  Google Scholar 

  35. Wu, W. et al. Conduction of topologically protected charged ferroelectric domain walls. Phys. Rev. Lett. 108, 077203 (2012).

    Article  Google Scholar 

  36. Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3 . Nature Commun. 4, 1808 (2013).

    Article  Google Scholar 

  37. Chishima, Y., Noguchi, Y., Kitanaka, Y. & Miyayama, M. Defect control for polarization switching in BiFeO3 single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2233–2236 (2010).

    Article  Google Scholar 

  38. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  39. Frederikse, H. & Hosler, W. Hall mobility in SrTiO3 . Phys. Rev. 161, 822–827 (1967).

    Article  CAS  Google Scholar 

  40. Guyonnet, J., Gaponenko, I., Gariglio, S. & Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377–5382 (2011).

    Article  CAS  Google Scholar 

  41. Schröder, M. et al. Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22, 3936–3944 (2012).

    Article  Google Scholar 

  42. Scott, J. F. et al. Radiation effects on ferroelectric thin-film memories: Retention failure mechanisms. J. Appl. Phys. 66, 1444–1453 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

The work at Rutgers University was supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4413 to the Rutgers Center for Emergent Materials, and that at Postech by the Max Planck POSTECH/KOREA Research Initiative Program (Grant No. 2011-0031558) through the NRF of Korea funded by MEST.

Author information

Authors and Affiliations

Authors

Contributions

Y.S.O. carried out P(E), IP-PFM, IP-PFM before/after poling, cAFM, IV measurements and statistical analysis, and conceived the hypothetical model. X.L. synthesized single crystals and performed XRD. F-T.H. performed the structure refinement. Y.S.O. and S-W.C. analysed the data and wrote the manuscript. S-W.C. initiated and supervised the research.

Corresponding author

Correspondence to Sang-Wook Cheong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 970 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Y., Luo, X., Huang, FT. et al. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals. Nature Mater 14, 407–413 (2015). https://doi.org/10.1038/nmat4168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing