Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics

Abstract

The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors and information storage. Although plasmonic materials for ultraviolet–visible and near-infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve subwavelength optical confinement with low loss in this range. With a combination of experiments and ab initio modelling, here we demonstrate an extreme peak of electron mobility in Dy-doped CdO that is achieved through accurate ‘defect equilibrium engineering’. In so doing, we create a tunable plasmon host that satisfies the criteria for mid-infrared spectrum plasmonics, and overcomes the losses seen in conventional plasmonic materials. In particular, extrinsic doping pins the CdO Fermi level above the conduction band minimum and it increases the formation energy of native oxygen vacancies, thus reducing their populations by several orders of magnitude. The substitutional lattice strain induced by Dy doping is sufficiently small, allowing mobility values around 500 cm2 V−1 s−1 for carrier densities above 1020 cm−3. Our work shows that CdO:Dy is a model system for intrinsic and extrinsic manipulation of defects affecting electrical, optical and thermal properties, that oxide conductors are ideal candidates for plasmonic devices and that the defect engineering approach for property optimization is generally applicable to other conducting metal oxides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Doping- and temperature-dependent properties of CdO:Dy.
Figure 2: DFT calculations and mechanistic zone model for lattice defects in CdO:Dy.
Figure 3: Reflectivity maps for CdO:Dy thin films recorded in the Kretschmann configuration.
Figure 4: Calculated quality factors for four selected CdO:Dy alloys as a function of energy.
Figure 5: Surface quality of CdO:Dy on MgO(100) substrates.

Similar content being viewed by others

References

  1. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  CAS  Google Scholar 

  2. West, P. R. et al. Searching for better plasmonic materials. Laser Photon. Rev. 4, 795–808 (2010).

    Article  CAS  Google Scholar 

  3. Law, S., Podolskiy, V. & Wasserman, D. Towards nano-scale photonics with micro-scale photons: The opportunities and challenges of mid-infrared plasmonics. Nanophotonics 2, 103–130 (2013).

    Article  CAS  Google Scholar 

  4. Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

    Article  CAS  Google Scholar 

  5. Stanley, R. Plasmonics in the mid-infrared. Nature Photon. 6, 409–411 (2012).

    Article  CAS  Google Scholar 

  6. Brar, V. W., Jang, M. S., Sherrott, M., Lopez, J. J. & Atwater, H. A. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 13, 2541–2547 (2013).

    Article  CAS  Google Scholar 

  7. Fang, Z. et al. Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7, 2388–2395 (2013).

    Article  CAS  Google Scholar 

  8. Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photon. 7, 394–399 (2013).

    Article  CAS  Google Scholar 

  9. Law, S., Adams, D. C., Taylor, A. M. & Wasserman, D. Mid-infrared designer metals. Opt. Express 20, 12155–12165 (2012).

    Article  CAS  Google Scholar 

  10. Law, S., Yu, L. & Wasserman, D. Epitaxial growth of engineered metals for mid-infrared plasmonics. J. Vac. Sci. Technol. B 31, 03C121 (2013).

    Google Scholar 

  11. Rosenberg, A. et al. Flat mid-infrared composite plasmonic materials using lateral doping-patterned semiconductors. J. Opt. 16, 094012 (2014).

    Google Scholar 

  12. Mendelsberg, R. J., Garcia, G. & Milliron, D. J. Extracting reliable electronic properties from transmission spectra of indium tin oxide thin films and nanocrystal films by careful application of the Drude theory. J. Appl. Phys. 111, 063515 (2012).

    Article  Google Scholar 

  13. Losego, M. D. et al. Conductive oxide thin films: Model systems for understanding and controlling surface plasmon resonance. J. Appl. Phys. 106, 024903 (2009).

    Article  Google Scholar 

  14. Rhodes, C. et al. Surface plasmon resonance in conducting metal oxides. J. Appl. Phys. 100, 054905 (2006).

    Article  Google Scholar 

  15. Noginov, M. A. et al. Transparent conductive oxides: Plasmonic materials for telecom wavelengths. Appl. Phys. Lett. 99, 021101 (2011).

    Article  Google Scholar 

  16. Sachet, E., Losego, M. D., Guske, J., Franzen, S. & Maria, J-P. Mid-infrared surface plasmon resonance in zinc oxide semiconductor thin films. Appl. Phys. Lett. 102, 051114 (2013).

    Article  Google Scholar 

  17. Koffyberg, F. P. Carrier concentration in oxygen deficient CdO single crystals. Phys. Lett. A 30, 37–38 (1969).

    Article  CAS  Google Scholar 

  18. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  19. Ridley, B. K. Reconciliation of the Conwell–Weisskopf and Brooks–Herring formulae for charged-impurity scattering in semiconductors: Third-body interference. J. Phys. C: Solid State Phys. 10, 1589–1593 (1977).

    CAS  Google Scholar 

  20. Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).

    Article  CAS  Google Scholar 

  21. Van de Walle, C. G. & Neugebauer, J. First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 95, 3851–3879 (2004).

    Article  CAS  Google Scholar 

  22. Gaddy, B. E. et al. Vacancy compensation and related donor–acceptor pair recombination in bulk AlN. Appl. Phys. Lett. 103, 161901 (2013).

    Article  Google Scholar 

  23. Burstein, E. Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954).

    Article  CAS  Google Scholar 

  24. Moss, T. S. The interpretation of the properties of indium antimonide. Proc. Phys. Soc. B 67, 775–782 (1954).

    Article  Google Scholar 

  25. Berini, P. Figures of merit for surface plasmon waveguides. Opt. Express 14, 13030–13042 (2006).

    Article  Google Scholar 

  26. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

    Book  Google Scholar 

  27. Herminjard, S. et al. Surface plasmon resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range. Opt. Express 17, 293–303 (2009).

    Article  CAS  Google Scholar 

  28. Kazmerski, L. L. & Racine, D. M. Growth, environmental, and electrical properties of ultrathin metal films. J. Appl. Phys. 46, 791–795 (2008).

    Article  Google Scholar 

  29. Hövel, H., Fritz, S., Hilger, A., Kreibig, U. & Vollmer, M. Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. Phys. Rev. B 48, 18178–18188 (1993).

    Article  Google Scholar 

  30. Kraus, W. A. & Schatz, G. C. Plasmon resonance broadening in small metal particles. J. Chem. Phys. 79, 6130–6139 (1983).

    Article  CAS  Google Scholar 

  31. Sohn, M. H., Kim, D., Kim, S. J., Paik, N. W. & Gupta, S. Super-smooth indium–tin oxide thin films by negative sputter ion beam technology. J. Vac. Sci. Technol. A 21, 1347–1350 (2003).

    Article  CAS  Google Scholar 

  32. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  33. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  34. Burbano, M., Scanlon, D. O. & Watson, G. W. Sources of conductivity and doping limits in CdO from hybrid density functional theory. J. Am. Chem. Soc. 133, 15065–15072 (2011).

    Article  CAS  Google Scholar 

  35. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  36. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003); erratum 124, 219906 (2006).

    Article  CAS  Google Scholar 

  37. Freysoldt, C., Neugebauer, J. & Van de Walle, C. G. Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 102, 016402 (2009).

    Article  Google Scholar 

  38. Freysoldt, C., Neugebauer, J. & Van de Walle, C. G. Electrostatic interactions between charged defects in supercells. Phys. Status Solidi B 248, 1067–1076 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.F. and J-P.M. gratefully acknowledge support of this work by NSF grant CHE-1112017. The NSF grant DMR-1151568 supported the DFT contributions. We would further like to acknowledge Efimenko and Genzer (NCSU, CBE) for granting us access to the IR-Ellipsometer. Sandia National Laboratories is a multi-programme laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. The thermal conductivity measurements were supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0067 (Subaward No. 5010-UV-AFOSR-0067) and the ONR Young Investigator Program (N00014-13-4-0528). S.C. acknowledges the Duke Center for Materials Genomics and partial support by ONR (MURI N00014-13-1-0635).

Author information

Authors and Affiliations

Authors

Contributions

E.S., S.F. and J-P.M. proposed the concept and experiments with support by S.C. C.T.S. and E.S. developed the MBE deposition and doping technique for the growth of CdO:Dy. E.S. led the experimental/analytical efforts with support from C.T.S., B.F.D., P.E.H., P.A.S., A.L.S. and J.I. The DFT simulations and analysis of theoretical results were performed by D.L.I., B.E.G. and J.S.H. All authors mentioned above discussed and contributed to the paper.

Corresponding authors

Correspondence to Stefano Curtarolo or Jon-Paul Maria.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1800 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachet, E., Shelton, C., Harris, J. et al. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nature Mater 14, 414–420 (2015). https://doi.org/10.1038/nmat4203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4203

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing