Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor–acceptor organic materials

Abstract

The ability to advance our understanding of multiple exciton generation (MEG) in organic materials has been restricted by the limited number of materials capable of singlet fission. A particular challenge is the development of materials that undergo efficient intramolecular fission, such that local order and strong nearest-neighbour coupling is no longer a design constraint. Here we address these challenges by demonstrating that strong intrachain donor–acceptor interactions are a key design feature for organic materials capable of intramolecular singlet fission. By conjugating strong-acceptor and strong-donor building blocks, small molecules and polymers with charge-transfer states that mediate population transfer between singlet excitons and triplet excitons are synthesized. Using transient optical techniques, we show that triplet populations can be generated with yields up to 170%. These guidelines are widely applicable to similar families of polymers and small molecules, and can lead to the development of new fission-capable materials with tunable electronic structure, as well as a deeper fundamental understanding of MEG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design template for singlet-fission-capable molecular and polymeric materials.
Figure 2: Structures and absorption spectra of singlet-fission-exhibiting and control materials.
Figure 3: Transient absorption data and global analysis for PBTDO1.
Figure 4: TA and PRTT for all TDO-containing materials.
Figure 5: Bleach recovery in transient absorption measurements.

Similar content being viewed by others

References

  1. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  CAS  Google Scholar 

  2. Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).

    Article  CAS  Google Scholar 

  3. Gélinas, S. et al. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343, 512–516 (2014).

    Article  Google Scholar 

  4. Brédas, J-L., Norton, J. E., Cornil, J. & Coropceanu, V. Molecular understanding of organic solar cells: The challenges. Acc. Chem. Res. 42, 1691–1699 (2009).

    Article  Google Scholar 

  5. Erb, T. et al. Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv. Funct. Mater. 15, 1193–1196 (2005).

    Article  CAS  Google Scholar 

  6. Kim, J. Y. et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007).

    Article  CAS  Google Scholar 

  7. You, J. et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Commun. 4, 1446 (2013).

    Article  Google Scholar 

  8. Small, C. E. et al. High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nature Photon. 6, 115–120 (2012).

    Article  CAS  Google Scholar 

  9. Sun, Y. et al. Solution-processed small-molecule solar cells with 6.7% efficiency. Nature Mater. 11, 44–48 (2012).

    Article  CAS  Google Scholar 

  10. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  11. Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).

    Article  Google Scholar 

  12. Ehrler, B. et al. In situ measurement of exciton energy in hybrid singlet-fission solar cells. Nature Commun. 3, 1019 (2012).

    Article  Google Scholar 

  13. Tritsch, J. R., Chan, W-L., Wu, X., Monahan, N. R. & Zhu, X. Y. Harvesting singlet fission for solar energy conversion via triplet energy transfer. Nature Commun. 4, 2679 (2013).

    Google Scholar 

  14. Congreve, D. N. et al. External quantum efficiency above 100% in a singlet-exciton-fission–based organic photovoltaic cell. Science 340, 334–337 (2013).

    Article  CAS  Google Scholar 

  15. Johnson, J. C., Nozik, A. J. & Michl, J. The role of chromophore coupling in singlet fission. Acc. Chem. Res. 46, 1290–1299 (2013).

    Article  CAS  Google Scholar 

  16. Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).

    Article  CAS  Google Scholar 

  17. Roberts, S. T. et al. Efficient singlet fission discovered in a disordered acene film. J. Am. Chem. Soc. 134, 6388–6400 (2012).

    Article  CAS  Google Scholar 

  18. Yost, S. R. et al. A transferable model for singlet fission kinetics. Nature Chem. 6, 492–497 (2014).

    Article  CAS  Google Scholar 

  19. Antognazza, M. R. et al. Ultrafast excited state relaxation in long-chain polyenes. Chem. Phys. 373, 115–121 (2010).

    Article  CAS  Google Scholar 

  20. Kraabel, B., Hulin, D., Aslangul, C., Lapersonne-Meyer, C. & Schott, M. Triplet exciton generation, transport and relaxation in isolated polydiacetylene chains: Subpicosecond pump-probe experiments. Chem. Phys. 227, 83–98 (1998).

    Article  CAS  Google Scholar 

  21. Musser, A. J. et al. Activated singlet exciton fission in a semiconducting polymer. J. Am. Chem. Soc. 135, 12747–12754 (2013).

    Article  CAS  Google Scholar 

  22. Gradinaru, C. C. et al. An unusual pathway of excitation energy deactivation in carotenoids: Singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc. Natl Acad. Sci. USA 98, 2364–2369 (2001).

    Article  CAS  Google Scholar 

  23. Papagiannakis, E. et al. Light harvesting by carotenoids incorporated into the B850 light-harvesting complex from rhodobacter sphaeroides R-26.1: Excited-state relaxation, ultrafast triplet formation, and energy transfer to bacteriochlorophyll. J. Phys. Chem. B 107, 5642–5649 (2003).

    Article  CAS  Google Scholar 

  24. Johnson, J. C. et al. Toward designed singlet fission: Solution photophysics of two indirectly coupled covalent dimers of 1,3-diphenylisobenzofuran. J. Phys. Chem. B 117, 4680–4695 (2013).

    Article  CAS  Google Scholar 

  25. Dell, E. J. & Campos, L. M. The preparation of thiophene-S, S-dioxides and their role in organic electronics. J. Mater. Chem. 22, 12945–12952 (2012).

    Article  CAS  Google Scholar 

  26. Wei, S. et al. Bandgap engineering through controlled oxidation of polythiophenes. Angew. Chem. Int. Ed. 53, 1832–1836 (2014).

    Article  CAS  Google Scholar 

  27. Beljonne, D., Yamagata, H., Brédas, J., Spano, F. & Olivier, Y. Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene. Phys. Rev. Lett. 110, 226402 (2013).

    Article  CAS  Google Scholar 

  28. Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Microscopic theory of singlet exciton fission. I. General formulation. J. Chem. Phys. 138, 114102 (2013).

    Article  Google Scholar 

  29. Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Microscopic theory of singlet exciton fission II. Application to pentacene dimers and the role of superexchange. J. Chem. Phys. 138, 114103 (2013).

    Article  Google Scholar 

  30. Chan, W-L. et al. The quantum coherent mechanism for singlet fission: Experiment and theory. Acc. Chem. Res. 46, 1321–1329 (2013).

    Article  CAS  Google Scholar 

  31. Chan, W-L. et al. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science 334, 1541–1545 (2011).

    Article  CAS  Google Scholar 

  32. Chan, W-L., Ligges, M. & Zhu, X. Y. The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nature Chem. 4, 840–845 (2012).

    Article  CAS  Google Scholar 

  33. Sharifzadeh, S., Darancet, P., Kronik, L. & Neaton, J. B. Low-energy charge-transfer excitons in organic solids from first-principles: The case of pentacene. J. Phys. Chem. Lett. 4, 2197–2201 (2013).

    Article  CAS  Google Scholar 

  34. Zhou, H., Yang, L. & You, W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 45, 607–632 (2012).

    Article  CAS  Google Scholar 

  35. Kitamura, C., Tanaka, S. & Yamashita, Y. Design of narrow-bandgap polymers. Syntheses and properties of monomers and polymers containing aromatic-donor and o-quinoid-acceptor units. Chem. Mater. 8, 570–578 (1996).

    Article  CAS  Google Scholar 

  36. Brédas, J. Relationship between band gap and bond length alternation in organic conjugated polymers. J. Chem. Phys. 82, 3808–3811 (1985).

    Article  Google Scholar 

  37. Havinga, E., Ten Hoeve, W. & Wynberg, H. A new class of small band gap organic polymer conductors. Polym. Bull. 29, 119–126 (1992).

    Article  CAS  Google Scholar 

  38. Szarko, J. M. et al. Electronic processes in conjugated diblock oligomers mimicking low band-gap polymers. Experimental and theoretical spectral analysis. J. Phys. Chem. B 114, 14505–14513 (2010).

    Article  CAS  Google Scholar 

  39. Guo, J., Ohkita, H., Benten, H. & Ito, S. Near-IR femtosecond transient absorption spectroscopy of ultrafast polaron and triplet exciton formation in polythiophene films with different regioregularities. J. Am. Chem. Soc. 131, 16869–16880 (2009).

    Article  CAS  Google Scholar 

  40. Mullen, K. M., Vengris, M. & van Stokkum, I. H. Algorithms for separable nonlinear least squares with application to modelling time-resolved spectra. J. Glob. Optim. 38, 201–213 (2007).

    Article  Google Scholar 

  41. Van Stokkum, I. H., Larsen, D. S. & van Grondelle, R. Global and target analysis of time-resolved spectra. Biochim. Biophys. Acta 1657, 82–104 (2004).

    Article  CAS  Google Scholar 

  42. Wishart, J. F., Cook, A. R. & Miller, J. R. The LEAF Picosecond Pulse Radiolysis Facility at Brookhaven National Laboratory. Rev. Sci. Instrum. 75, 4359–4366 (2004).

    Article  CAS  Google Scholar 

  43. Head-Gordon, M., Grana, A. M., Maurice, D. & White, C. A. Analysis of electronic transitions as the difference of electron attachment and detachment densities. J. Phys. Chem. 99, 14261–14270 (1995).

    Article  CAS  Google Scholar 

  44. Oliva, M. M. et al. Do [all]-S, S′-dioxide oligothiophenes show electronic and optical properties of oligoenes and/or of oligothiophenes? J. Am. Chem. Soc. 132, 6231–6242 (2010).

    Article  CAS  Google Scholar 

  45. Amir, E. et al. Synthesis and characterization of soluble low-bandgap oligothiophene-[all]-S, S-dioxides-based conjugated oligomers and polymers. J. Polym. Sci. A 49, 1933–1941 (2011).

    Article  CAS  Google Scholar 

  46. Sreearunothai, P. et al. Triplet transport to and trapping by acceptor end groups on conjugated polyfluorene chains. J. Phys. Chem. C 115, 19569–19577 (2011).

    Article  CAS  Google Scholar 

  47. Heinzelmann, W. & Labhart, H. Triplet–triplet spectra and triplet quantum yields of some aromatic hydrocarbons in liquid solution. Chem. Phys. Lett. 4, 20–24 (1969).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded through the Center for Re-Defining Photovoltaic Efficiency Through Molecular-Scale Control, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Award DE-SC0001085. L.M.C. thanks 3M Non-Tenured Faculty Award and the NSF CAREER (DMR-1351293) for funding the synthesis of the small molecules and control materials. X-Y.Z. acknowledges support by the National Science Foundation, DMR-1321405. We wish to thank M. Vengris (Vilnius University) for graciously providing his global analysis software package for our use. We also thank S. Wei for a sample of PFTDO1 and J. Hoy for additional cyclic voltammetry measurements. Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886, and in the Chemistry Department, Brookhaven National Laboratory through Grant #DE-AC02-98-CH10886, which also supports the LEAF Facility of the BNL Accelerator Center for Energy Research.

Author information

Authors and Affiliations

Authors

Contributions

E.B., J.X., L.M.C. and M.Y.S. conceived the experiments. L.M.C. and M.Y.S. supervised the project. J.X., J.Z.L. and R.S. synthesized and characterized the materials. E.B. performed transient absorption data acquisition and analysis. Q.W. provided theoretical support. J.R.M. and E.B. performed pulse radiolysis experiments. E.B., L.M.C. and M.Y.S. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Luis M. Campos or Matthew Y. Sfeir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busby, E., Xia, J., Wu, Q. et al. A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor–acceptor organic materials. Nature Mater 14, 426–433 (2015). https://doi.org/10.1038/nmat4175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing