Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydraulic fracture during epithelial stretching

Abstract

The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell–cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epithelial fracture during stretch–unstretch manoeuvres.
Figure 2: Cracks are independent of epithelial tension.
Figure 3: Stretch induces poroelastic flows and pressure beneath the cell cluster.
Figure 4: The origin of cracks is hydraulic.
Figure 5: Cracks seal from apical to basal plane in a myosin-dependent fashion.

Similar content being viewed by others

References

  1. Alberts, B. Molecular Biology of the Cell (Garland Science, 2002).

    Google Scholar 

  2. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (Springer, 1993).

    Google Scholar 

  3. Guillot, C. & Lecuit, T. Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340, 1185–1189 (2013).

    CAS  Google Scholar 

  4. Bosveld, F. et al. Mechanical control of morphogenesis by fat/dachsous/four-jointed planar cell polarity pathway. Science 336, 724–727 (2012).

    CAS  Google Scholar 

  5. He, B., Doubrovinski, K., Polyakov, O. & Wieschaus, E. Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation. Nature 508, 392–396 (2014).

    CAS  Google Scholar 

  6. Discher, D. et al. Biomechanics: Cell research and applications for the next decade. Ann. Biomed. Eng. 37, 847–859 (2009).

    Google Scholar 

  7. Fink, J. et al. External forces control mitotic spindle positioning. Nature Cell Biol. 13, 771–778 (2011).

    CAS  Google Scholar 

  8. Zhang, H. & Labouesse, M. Signalling through mechanical inputs: A coordinated process. J. Cell Sci. 125, 3039–3049 (2012).

    CAS  Google Scholar 

  9. Miller, C. J. & Davidson, L. A. The interplay between cell signalling and mechanics in developmental processes. Nature Rev. Genet. 14, 733–744 (2013).

    CAS  Google Scholar 

  10. The Acute Respiratory Distress Syndrome Network, Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. New Engl. J. Med. 342, 1301–1308 (2000).

    Google Scholar 

  11. Suki, B. & Hubmayr, R. Epithelial and endothelial damage induced by mechanical ventilation modes. Curr. Opin. Crit. Care 20, 17–24 (2014).

    Google Scholar 

  12. Harris, A. R. et al. Characterizing the mechanics of cultured cell monolayers. Proc. Natl Acad. Sci. USA 109, 16449–16454 (2012).

    CAS  Google Scholar 

  13. Trepat, X. et al. Viscoelasticity of human alveolar epithelial cells subjected to stretch. Am. J. Physiol. Lung Cell Mol. Physiol. 287, L1025–L1034 (2004).

    CAS  Google Scholar 

  14. Krishnan, R. et al. Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces. Am. J. Physiol. Cell Physiol. 300, C146–C154 (2011).

    CAS  Google Scholar 

  15. Dubrovskyi, O., Birukova, A. A. & Birukov, K. G. Measurement of local permeability at subcellular level in cell models of agonist- and ventilator-induced lung injury. Lab. Invest. 93, 254–263 (2013).

    CAS  Google Scholar 

  16. Sandre, O., Moreaux, L. & Brochard-Wyart, F. Dynamics of transient pores in stretched vesicles. Proc. Natl Acad. Sci. USA 96, 10591–10596 (1999).

    CAS  Google Scholar 

  17. Murrel, M. P. et al. Liposome adhesion generates traction stress. Nature Phys. 10, 163–169 (2014).

    Google Scholar 

  18. Vlahakis, N. E. & Hubmayr, R. D. Response of alveolar cells to mechanical stress. Curr. Opin. Crit. Care 9, 2–8 (2003).

    Google Scholar 

  19. Ostuni, E., Kane, R., Chen, C. S., Ingber, D. E. & Whitesides, G. M. Patterning mammalian cells using elastomeric membranes. Langmuir 16, 7811–7819 (2000).

    CAS  Google Scholar 

  20. Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L. & Mitchison, T. J. Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435, 365–369 (2005).

    CAS  Google Scholar 

  21. Paluch, E. K. & Raz, E. The role and regulation of blebs in cell migration. Curr. Opin. Cell Biol. 25, 582–590 (2013).

    CAS  Google Scholar 

  22. Maitre, J. L. et al. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338, 253–256 (2012).

    CAS  Google Scholar 

  23. Serra-Picamal, X. et al. Mechanical waves during tissue expansion. Nature Phys. 8, 628–634 (2012).

    CAS  Google Scholar 

  24. Trepat, X. et al. Physical forces during collective cell migration. Nature Phys. 5, 426–430 (2009).

    CAS  Google Scholar 

  25. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nature Mater. 10, 469–475 (2011).

    CAS  Google Scholar 

  26. Trepat, X. et al. Universal physical responses to stretch in the living cell. Nature 447, 592–595 (2007).

    CAS  Google Scholar 

  27. Gavara, N., Roca-Cusachs, P., Sunyer, R., Farre, R. & Navajas, D. Mapping cell-matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton. Biophys. J. 95, 464–471 (2008).

    CAS  Google Scholar 

  28. Krishnan, R. et al. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness. PLoS ONE 4, e5486 (2009).

    Google Scholar 

  29. Riveline, D. et al. Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001).

    CAS  Google Scholar 

  30. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    CAS  Google Scholar 

  31. Roca-Cusachs, P., Iskratsch, T. & Sheetz, M. P. Finding the weakest link: Exploring integrin-mediated mechanical molecular pathways. J. Cell Sci. 125, 3025–3038 (2012).

    CAS  Google Scholar 

  32. Wolff, L., Fernández, P. & Kroy, K. Resolving the stiffening-softening paradox in cell mechanics. PLoS ONE 7, e40063 (2012).

    CAS  Google Scholar 

  33. Tanaka, T. & Fillmore, D. J. Kinetics of swelling of gels. J. Chem. Phys. 70, 1214–1218 (1979).

    CAS  Google Scholar 

  34. Noailly, J., Van Oosterwyck, H., Wilson, W., Quinn, T. M. & Ito, K. A poroviscoelastic description of fibrin gels. J. Biomech. 41, 3265–3269 (2008).

    Google Scholar 

  35. Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nature Mater. 12, 253–261 (2013).

    CAS  Google Scholar 

  36. Hong, W., Zhao, X., Zhou, J. & Suo, Z. A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids 56, 1779–1793 (2008).

    CAS  Google Scholar 

  37. Li, J., Hu, Y., Vlassak, J. J. & Suo, Z. Experimental determination of equations of state for ideal elastomeric gels. Soft Matter 8, 8121–8128 (2012).

    CAS  Google Scholar 

  38. Derezic, D. & Cecuk, L. Hydrostatic pressure within renal cysts. Br. J. Urol. 54, 93–94 (1982).

    CAS  Google Scholar 

  39. West, J. B. & Mathieu-Costello, O. Vulnerability of pulmonary capillaries in heart disease. Circulation 92, 622–631 (1995).

    CAS  Google Scholar 

  40. Sonnemann, K. J. & Bement, W. M. Wound repair: Toward understanding and integration of single-cell and multicellular wound responses. Annu. Rev. Cell Dev. Biol. 27, 237–263 (2011).

    CAS  Google Scholar 

  41. Brugues, A. et al. Forces driving epithelial wound healing. Nature Phys. 10, 683–690 (2014).

    CAS  Google Scholar 

  42. Martinelli, R. et al. Release of cellular tension signals self-restorative ventral lamellipodia to heal barrier micro-wounds. J. Cell Biol. 201, 449–465 (2013).

    CAS  Google Scholar 

  43. Heo, J., Sachs, F., Wang, J. & Hua, S. Z. Shear-induced volume decrease in MDCK cells. Cell Physiol. Biochem. 30, 395–406 (2012).

    CAS  Google Scholar 

  44. Buehler, M. J. & Yung, Y. C. Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Mater. 8, 175–188 (2009).

    CAS  Google Scholar 

  45. Tang, Z., Kotov, N. A., Magonov, S. & Ozturk, B. Nanostructured artificial nacre. Nature Mater. 2, 413–418 (2003).

    CAS  Google Scholar 

  46. Espinosa, H. D. et al. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nature Commun. 2, 173 (2011).

    Google Scholar 

  47. Gao, H., Ji, B., Jager, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).

    CAS  Google Scholar 

  48. Jeffery, P. K. Remodeling in asthma and chronic obstructive lung disease. Am. J. Respir. Crit. Care Med. 164, S28–S38 (2001).

    CAS  Google Scholar 

  49. Coleman, H. R., Chan, C. C., Ferris, F. L. III & Chew, E. Y. Age-related macular degeneration. Lancet 372, 1835–1845 (2008).

    CAS  Google Scholar 

  50. Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).

    CAS  Google Scholar 

  51. Simmons, C. S., Ribeiro, A. J. S. & Pruitt, B. L. Formation of composite polyacrylamide and silicone substrates for independent control of stiffness and strain. Lab Chip 13, 646–649 (2013).

    CAS  Google Scholar 

  52. Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell. Motil. Cytoskeleton 60, 24–34 (2005).

    Google Scholar 

  53. Kandow, C. E., Georges, P. C., Janmey, P. A. & Beningo, K. A. Polyacrylamide hydrogels for cell mechanics: Steps toward optimization and alternative uses. Methods Cell Biol. 83, 29–46 (2007).

    CAS  Google Scholar 

  54. Nichols, J. E. et al. Production and assessment of decellularized pig and human lung scaffolds. Tissue Eng. A 19, 2045–2062 (2013).

    CAS  Google Scholar 

  55. Melo, E. et al. Effects of the decellularization method on the local stiffness of acellular lungs. Tissue Eng. C 20, 412–422 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Bintanel, M. A. Rodríguez, J. Palou, E. Rebollo and N. Castro for technical assistance, the Nanotechnology platform at IBEC for microfabrication, P. Roca-Cusachs and members of the Trepat Lab for discussions, and B. Ladoux and J. De Rooij for plasmids and stable cell lines. This research was supported by the Spanish Ministry of Economy and Competitiveness (BFU2012-38146 to X.T., FIS-PI11/00089 to D.N.), the European Research Council (Grant Agreement 242993 to X.T., Grant Agreement 240487 to M.A.), and the National Institutes of Health (R01HL107561 to X.T.).

Author information

Authors and Affiliations

Authors

Contributions

L.C. and X.T. designed and implemented the experimental set-up. L.C., M.A. and X.T. designed the experiments, L.C. performed the experiments, and L.C. and R.V. analysed the experimental data. M.A. performed the theoretical analysis, D.Z. contributed technology, N.C. and D.N. decellularized the animal tissue, and L.C., M.A. and X.T. wrote the manuscript. All authors discussed and interpreted results, and commented on the manuscript.

Corresponding authors

Correspondence to Marino Arroyo or Xavier Trepat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4226 kb)

Supplementary Information

Supplementary Movie 1 (MOV 609 kb)

Supplementary Information

Supplementary Movie 2 (MOV 314 kb)

Supplementary Information

Supplementary Movie 3 (MOV 752 kb)

Supplementary Information

Supplementary Movie 4 (MOV 385 kb)

Supplementary Information

Supplementary Movie 5 (MOV 308 kb)

Supplementary Information

Supplementary Movie 6 (MOV 510 kb)

Supplementary Information

Supplementary Movie 7 (MOV 435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casares, L., Vincent, R., Zalvidea, D. et al. Hydraulic fracture during epithelial stretching. Nature Mater 14, 343–351 (2015). https://doi.org/10.1038/nmat4206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing