Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phonon black-body radiation limit for heat dissipation in electronics

Abstract

Thermal dissipation at the active region of electronic devices is a fundamental process of considerable importance1,2,3. Inadequate heat dissipation can lead to prohibitively large temperature rises that degrade performance4,5,6,7, and intensive efforts are under way to mitigate this self-heating8,9,10,11,12. At room temperature, thermal resistance is due to scattering, often by defects and interfaces in the active region, that impedes the transport of phonons. Here, we demonstrate that heat dissipation in widely used cryogenic electronic devices13,14,15,16 instead occurs by phonon black-body radiation with the complete absence of scattering, leading to large self-heating at cryogenic temperatures and setting a key limit on the noise floor. Our result has important implications for the many fields that require ultralow-noise electronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical micrographs and noise measurements of a low-noise amplifier integrated circuit.
Figure 2: Calculated steady-state lattice temperature profiles with Joule heating.
Figure 3: Temperature saturation and intrinsic temperature rise.

Similar content being viewed by others

References

  1. Cahill, D. G. et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).

    Article  Google Scholar 

  2. Pop, E., Sinha, S. & Goodson, K. E. Heat generation and transport in nanometer-scale transisitors. Proc. IEEE 94, 1587–1601 (2006).

    Article  CAS  Google Scholar 

  3. Moore, A. L. & Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. Today 17, 163–174 (April, 2014).

    Article  CAS  Google Scholar 

  4. Trew, R., Green, D. & Shealy, J. AlGaN/GaN HFET reliability. IEEE Microw. Mag. 10, 116–127 (2009).

    Article  Google Scholar 

  5. Kuzmik, J. et al. Self-heating phenomena in high-power III-N transistors and new thermal characterization methods developed within EU project TARGET. Int. J. Microw. Wirel. Technol. 1 (Special issue 02), 153–160 (2009).

    Article  Google Scholar 

  6. Cho, J., Li, Z., Asheghi, M. & Goodson, K. E. Annual Review of Heat Transfer (Belsevere, 2014).

    Google Scholar 

  7. Weinreb, S. Low-noise cooled GASFET amplifiers. IEEE Trans. Microw. Theory Tech. 28, 1041–1054 (1980).

    Article  Google Scholar 

  8. Yan, Z., Liu, G., Khan, J. M. & Balandin, A. A. Graphene quilts for thermal management of high-power GaN transistors. Nature Commun. 3, 827 (2012).

    Article  Google Scholar 

  9. Su, Z. et al. Layer-by-layer thermal conductivities of the group III nitride films in blue/green light emitting diodes. Appl. Phys. Lett. 100, 201106 (2012).

    Article  Google Scholar 

  10. Sun, J. et al. Thermal management of AlGaN-GaN HFETs on sapphire using flip-chip bonding with epoxy underfill. IEEE Electron Device Lett. 24, 375–377 (2003).

    Article  CAS  Google Scholar 

  11. Kidalov, S. V. & Shakhov, F. M. Thermal conductivity of diamond composites. Materials 2, 2467–2495 (2009).

    Article  CAS  Google Scholar 

  12. Subrina, S., Kotchetkov, D. & Balandin, A. A. Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders. IEEE Electron Device Lett. 30, 1281–1283 (2009).

    Article  CAS  Google Scholar 

  13. Pospieszalski, M. Extremely low-noise amplification with cryogenic FETs and HFETs: 1970–2004. IEEE Microw. Mag. 6, 62–75 (2005).

    Article  Google Scholar 

  14. Wilson, C. M. Observation of the dynamic Casimir effect in a superconducting circuit. Nature 479, 376–379 (2011).

    Article  CAS  Google Scholar 

  15. Delahaye, J. et al. Low-noise current amplifier based on mesoscopic Josephson junction. Science 299, 1045–1048 (2003).

    Article  CAS  Google Scholar 

  16. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    Article  CAS  Google Scholar 

  17. Casimir, H. Note on the conduction of heat in crystals. Physica 5, 495–500 (1938).

    Article  Google Scholar 

  18. Klitsner, T., VanCleve, J. E., Fischer, H. E. & Pohl, R. O. Phonon radiative heat transfer and surface scattering. Phys. Rev. B 38, 7576–7594 (1988).

    Article  CAS  Google Scholar 

  19. Schleeh, J., Rodilla, H., Wadefalk, N., Nilsson, P. & Grahn, J. Characterization and modeling of cryogenic ultralow-noise InP HEMTs. IEEE Trans. Electron Devices 60, 206–212 (2013).

    Article  CAS  Google Scholar 

  20. Pospieszalski, M. Modeling of noise parameters of MESFETs and MODFETs and their frequency and temperature dependence. IEEE Trans. Microw. Theory Tech. 37, 1340–1350 (1989).

    Article  Google Scholar 

  21. Yang, R., Chen, G., Laroche, M. & Taur, Y. Simulation of nanoscale multidimensional transient heat conduction problems using ballistic-diffusive equations and phonon Boltzmann equation. J. Heat Transfer 127, 298–306 (2005).

    Article  Google Scholar 

  22. Jeng, M-S., Yang, R., Song, D. & Chen, G. Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulations. J. Heat Transfer 130, 042410 (2008).

    Article  Google Scholar 

  23. Sinha, S., Pop, E., Dutton, R. W. & Goodson, K. E. Non-equilibrium phonon distributions in sub-100 nm silicon transistors. J. Heat Transfer 128, 638–647 (2006).

    Article  CAS  Google Scholar 

  24. Péraud, J-P. M. & Hadjiconstantinou, N. G. An alternative approach to efficient simulation of micro/nanoscale phonon transport. Appl. Phys. Lett. 101, 153114 (2012).

    Article  Google Scholar 

  25. Peterson, R. B. Direct simulation of phonon-mediated heat transfer in a Debye crystal. J. Heat Transfer 116, 815–822 (1994).

    Article  CAS  Google Scholar 

  26. Chen, G. Thermal conductivity and ballistic phonon transport in cross-plane direction of superlattices. Phys. Rev. B 57, 14958–14973 (1998).

    Article  CAS  Google Scholar 

  27. www.ioffe.rssi.ru/SVA/NSM/Semicond/index.html (2014)

  28. Klemens, P. G. The thermal conductivity of dielectric solids at low temperatures (theoretical). Proc. R. Soc. Lond. A 208, 108–133 (1951).

    Article  CAS  Google Scholar 

  29. Zhao, H. & Freund, J. B. Phonon scattering at a rough interface between two fcc lattices. J. Appl. Phys. 105, 013515 (2009).

    Article  Google Scholar 

  30. Luckyanova, M. N. et al. Coherent phonon heat conduction in superlattices. Science 338, 936–939 (2012).

    Article  CAS  Google Scholar 

  31. Sverdrup, P. G., Sinha, S., Asheghi, M., Uma, S. & Goodson, K. E. Measurement of ballistic phonon conduction near hotspots in silicon. Appl. Phys. Lett. 78, 3331–3333 (2001).

    Article  CAS  Google Scholar 

  32. Gu, D., Randa, J., Billinger, R. & Walker, D. K. Measurement and uncertainty of a cryogenic low-noise amplifier with noise temperature below 2 K. Radio Sci. 48, 344–351 (2013).

    Article  Google Scholar 

  33. Mateos, J., González, T., Pardo, D., Hoel, V. & Cappy, A. Monte Carlo simulator for the design optimization of low-noise HEMTs. IEEE Trans. Electron Devices 47, 1950–1956 (2000).

    Article  Google Scholar 

  34. Rodilla, H. et al. Cryogenic performance of low-noise InP HEMTs: A Monte Carlo study. IEEE Trans. Electron Devices 60, 1625–1631 (2013).

    Article  CAS  Google Scholar 

  35. Sinha, S. & Goodson, K. E. Thermal conduction in sub-100nm transistors. Microelectron. J. 37, 1148–1157 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Weinreb for useful discussions. I.I-d-l-T. and J.M. were partially supported by the Spanish MINECO through project TEC2013-41640-R and by the Consejeria de Educación de la Junta de Castilla y León through project SA052U13. J.S., N.W., P.A.N. and J.G. were supported by the GigaHertz Centre in a joint research project financed by the Swedish Governmental Agency of Innovation Systems (VINNOVA), Chalmers University of Technology, Omnisys Instruments AB, Wasa Millimeter Wave, Low Noise Factory and SP Technical Research Institute of Sweden. A.J.M. was supported by a Caltech startup fund and by the National Science Foundation under Grant no. CAREER CBET 1254213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Minnich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schleeh, J., Mateos, J., Íñiguez-de-la-Torre, I. et al. Phonon black-body radiation limit for heat dissipation in electronics. Nature Mater 14, 187–192 (2015). https://doi.org/10.1038/nmat4126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing