Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures

Subjects

Abstract

To be able to control the functions of engineered multicomponent nanomaterials, a detailed understanding of heterogeneous nucleation at the nanoscale is essential. Here, by using in situ synchrotron X-ray scattering, we show that in the heterogeneous nucleation and growth of Au on Pt or Pt-alloy seeds the heteroepitaxial growth of the Au shell exerts high stress (2 GPa) on the seed by forming a core/shell structure in the early stage of the reaction. The development of lattice strain and subsequent strain relaxation, which we show using atomic-resolution transmission electron microscopy to occur through the slip of {111} layers, induces morphological changes from a core/shell to a dumbbell structure, and governs the nucleation and growth kinetics. We also propose a thermodynamic model for the nucleation and growth of dumbbell metallic heteronanostructures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM images of the seeds and nanodumbbells.
Figure 2: In situ SAXS/WAXS data from the synthesis reaction of CoPt3/Au dumbbells.
Figure 3: Core/shell to dumbbell transition of the seed/Au NP during synthesis.
Figure 4: Heterogeneous nucleation kinetics of the dumbbells.
Figure 5: STEM analysis on the seed/Au interface of the dumbbell.
Figure 6: Lattice structure at the seed/Au interface, and distribution of Au domain positions for CoPt3/Au, Pt/Au and FePt/Au dumbbells.

Similar content being viewed by others

References

  1. Tada, H., Mitsui, T., Kiyonaga, T., Akita, T. & Tanaka, K. All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nature Mater. 5, 782–786 (2006).

    Article  CAS  Google Scholar 

  2. Amirav, L. & Alivisatos, A. P. Luminescence studies of individual quantum dot photocatalysts. J. Am. Chem. Soc. 135, 13049–13053 (2013).

    Article  CAS  Google Scholar 

  3. Si, R. & Flytzani-Stephanopoulos, M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au–CeO2 catalysts for the water–gas shift reaction. Angew. Chem. Int. Ed. 47, 2884–2887 (2008).

    Article  CAS  Google Scholar 

  4. Lee, Y., Garcia, M. A., Huls, N. A. F. & Sun, S. Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles. Angew. Chem. Int. Ed. 49, 1271–1274 (2010).

    Article  CAS  Google Scholar 

  5. Lim, B. et al. Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302–1305 (2009).

    Article  CAS  Google Scholar 

  6. Yamada, Y. et al. Nanocrystal bilayer for tandem catalysis. Nature Chem. 3, 372–376 (2011).

    Article  CAS  Google Scholar 

  7. Wang, L., Nemoto, Y. & Yamauchi, Y. Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J. Am. Chem. Soc. 133, 9674–9677 (2011).

    Article  CAS  Google Scholar 

  8. Zhang, H., Watanabe, T., Okumura, M., Haruta, M. & Toshima, N. Catalytically highly active top gold atom on palladium nanocluster. Nature Mater. 11, 49–52 (2012).

    Article  Google Scholar 

  9. Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nature Mater. 12, 765–771 (2013).

    Article  CAS  Google Scholar 

  10. Wu, H. et al. Formation of heterodimer nanocrystals: UO2/In2O3 and FePt/In2O3 . J. Am. Chem. Soc. 133, 14327–14337 (2011).

    Article  CAS  Google Scholar 

  11. Costi, R., Saunders, A. E. & Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem. Int. Ed. 49, 4878–4897 (2010).

    Article  CAS  Google Scholar 

  12. Carbone, L. & Cozzoli, P. D. Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 5, 449–493 (2010).

    Article  CAS  Google Scholar 

  13. Wang, C., Xu, C., Zeng, H. & Sun, S. Recent progress in syntheses and applications of dumbbell-like nanoparticles. Adv. Mater. 21, 3045–3052 (2009).

    Article  CAS  Google Scholar 

  14. Reiss, P., Protière, M. & Li, L. Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009).

    Article  CAS  Google Scholar 

  15. Mazumder, V., Chi, M., More, K. L. & Sun, S. Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles. Angew. Chem. Int. Ed. 49, 9368–9372 (2010).

    Article  CAS  Google Scholar 

  16. Podsiadlo, P. et al. How “hollow” are hollow nanoparticles? J. Am. Chem. Soc. 135, 2435–2438 (2013).

    Article  CAS  Google Scholar 

  17. Zhang, J., Tang, Y., Lee, K. & Ouyang, M. Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 327, 1634–1638 (2010).

    Article  CAS  Google Scholar 

  18. Pellegrino, T. et al. Heterodimers based on CoPt3–Au nanocrystals with tunable domain size. J. Am. Chem. Soc. 128, 6690–6698 (2006).

    Article  CAS  Google Scholar 

  19. Krylova, G. et al. Probing the surface of transition-metal nanocrystals by chemiluminesence. J. Am. Chem. Soc. 132, 9102–9110 (2010).

    Article  CAS  Google Scholar 

  20. Krylova, G. et al. Study of nucleation and growth mechanism of the metallic nanodumbbells. J. Am. Chem. Soc. 134, 4384–4392 (2012).

    Article  CAS  Google Scholar 

  21. Mokari, T., Rothenberg, E., Popov, I., Costi, R. & Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304, 1787–1790 (2004).

    Article  CAS  Google Scholar 

  22. Mokari, T., Sztrum, C. G., Salant, A., Rabani, E. & Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nature Mater. 4, 855–863 (2005).

    Article  CAS  Google Scholar 

  23. Halpert, J. E., Porter, V. J., Zimmer, J. P. & Bawendi, M. G. Synthesis of CdSe/CdTe nanobarbells. J. Am. Chem. Soc. 128, 12590–12591 (2006).

    Article  CAS  Google Scholar 

  24. Carbone, L. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007).

    Article  CAS  Google Scholar 

  25. Talapin, D. V. et al. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7, 2951–2959 (2007).

    Article  CAS  Google Scholar 

  26. Fiore, A. et al. Tetrapod-shaped colloidal nanocrystals of II–VI semiconductors prepared by seeded growth. J. Am. Chem. Soc. 131, 2274–2282 (2009).

    Article  CAS  Google Scholar 

  27. Pimpinelli, A. & Villain, J. Physics of Crystal Growth (Cambridge Univ. Press, 1999).

    Google Scholar 

  28. Wang, C. et al. Rational synthesis of heterostructured nanoparticles with morphology control. J. Am. Chem. Soc. 132, 6524–6529 (2010).

    Article  CAS  Google Scholar 

  29. Habas, S. E., Lee, H., Radmilovic, V., Somorjai, G. A. & Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Mater. 6, 692–697 (2007).

    Article  CAS  Google Scholar 

  30. Smith, A. M., Mohs, A. M. & Nie, S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nature Nanotech. 4, 56–63 (2009).

    Article  CAS  Google Scholar 

  31. Wanjala, B. N., Luo, J., Fang, B., Mott, D. & Zhong, C. J. Gold–platinum nanoparticles: Alloying and phase segregation. J. Mater. Chem. 21, 4012–4020 (2011).

    Article  CAS  Google Scholar 

  32. Guinier, A. & Fournet, G. Small-Angle Scattering of X-rays (Wiley, 1955).

    Google Scholar 

  33. Roe, R-J. Method of X-ray and Neutron Scattering in Polymer Science (Oxford Univ. Press, 2000).

    Google Scholar 

  34. Winkler, P. M. et al. Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles. Science 319, 1374–1377 (2008).

    Article  CAS  Google Scholar 

  35. Fletcher, N. H. Size effect in heterogeneous nucleation. J. Chem. Phys. 29, 572–576 (1958).

    Article  CAS  Google Scholar 

  36. Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers. I. Misfit dislocations. J. Crystal Growth 27, 118–125 (1974).

    CAS  Google Scholar 

  37. Jesser, W. A. & Kuhlmann-Wilsdorf, D. On the theory of interfacial energy and elastic strain of epitaxial overgrowths in parallel alignment on single crystal substrates. Phys. Status Solidi 19, 95–105 (1967).

    Article  CAS  Google Scholar 

  38. Wang, C., Wei, Y., Jiang, H. & Sun, S. Tug-of-war in nanoparticles: Competitive growth of Au on Au-Fe3O4 nanoparticles. Nano Lett. 9, 4544–4547 (2009).

    Article  CAS  Google Scholar 

  39. Topor, L. & Kleppa, O. J. Thermochemistry of binary liquid gold alloys: The systems Au–Ni, Au–Co, Au–Fe, and Au–Mn. Metall. Trans. 15, 573–580 (1984).

    Article  Google Scholar 

  40. Okamoto, H. & Massalski, T. B. The Au–Pt (gold–platinum) system. Bull. Alloys Phase Diagr. 6, 46–56 (1985).

    Article  CAS  Google Scholar 

  41. Okamoto, H. & Massalski, T. B. The Au–Pd (gold–palladium) system. Bull. Alloys Phase Diagr. 6, 229–235 (1985).

    Article  CAS  Google Scholar 

  42. Gallezot, P. & Richard, D. Selective hydrogenation of α,β-unsaturated aldehydes. Cat. Rev. 40, 81–126 (1998).

    Article  CAS  Google Scholar 

  43. Vehkamäki, H. et al. Heterogeneous multicomponent nucleation theorems for the analysis of nanoclusters. J. Chem. Phys. 126, 174707 (2007).

    Article  Google Scholar 

  44. Park, J., Joo, J., Kwon, S. G., Jang, Y. & Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660 (2007).

    Article  CAS  Google Scholar 

  45. Shim, M., McDaniel, H. & Oh, N. Prospects for strained type-II nanorod heterostructures. J. Phys. Chem. Lett. 2, 2722–2727 (2011).

    Article  CAS  Google Scholar 

  46. Buonsanti, R. et al. Architectural control of seeded-grown magnetic-semiconductor iron oxide–TiO2 nanorod heterostructures: The role of seeds in topology selection. J. Am. Chem. Soc. 132, 2437–2464 (2010).

    Article  CAS  Google Scholar 

  47. Hull, D. & Bacon, D. J. Introduction to Dislocations 5th edn (Butterworth–Heinemann, 2011).

    Google Scholar 

  48. Kim, S. W. et al. Synthesis of monodisperse palladium nanoparticles. Nano Lett. 3, 1289–1291 (2003).

    Article  CAS  Google Scholar 

  49. Kwon, S. G. et al. Capping ligands as selectivity switchers in hydrogenation reactions. Nano Lett. 12, 5382–5388 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Use of the Center for Nanoscale Materials and Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT is funded by MRCAT host institutions. The authors thank C. Marshall for fruitful discussion and help in tests of catalytic activity. S.C. and T.S. would like to thank V. Zyryanov for help with experiments and C. Segre for beam-time allocation. P.J.P. and R.F.K. acknowledge support from the National Science Foundation (DMR-0959470) for the acquisition of the UIC JEOL JEMARM200CF. Support from the UIC Research Resources Center is also acknowledged. The work at GeoSoilEnviroCARS was supported by the National Science Foundation—Earth Sciences (EAR-0622171) and Department of Energy—Geosciences (DE-FG02-94ER14466).

Author information

Authors and Affiliations

Authors

Contributions

S.G.K. designed and implemented experiments, and analysed the data except for SAXS and EXAFS. G.K. carried out NP synthesis and sample preparations. P.J.P. and R.F.K. performed STEM and EDX measurements. S.C. and T.S. measured EXAFS and analysed the data. E.E.B. supervised catalytic reactions and analysis. Y.L. supervised TEM analysis. V.B.P. performed synchrotron X-ray diffraction measurements. B.L. supervised and performed SAXS/WAXS measurements and analysed SAXS data. E.V.S. supervised the project and wrote the manuscript with B.L. and S.G.K.

Corresponding authors

Correspondence to Byeongdu Lee or Elena V. Shevchenko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, S., Krylova, G., Phillips, P. et al. Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nature Mater 14, 215–223 (2015). https://doi.org/10.1038/nmat4115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing