Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8

Abstract

Following the early prediction of the skyrmion lattice (SkL)—a periodic array of spin vortices—it has been observed recently in various magnetic crystals mostly with chiral structure. Although non-chiral but polar crystals with Cnv symmetry were identified as ideal SkL hosts in pioneering theoretical studies, this archetype of SkL has remained experimentally unexplored. Here, we report the discovery of a SkL in the polar magnetic semiconductor GaV4S8 with rhombohedral (C3v) symmetry and easy axis anisotropy. The SkL exists over an unusually broad temperature range compared with other bulk crystals and the orientation of the vortices is not controlled by the external magnetic field, but instead confined to the magnetic easy axis. Supporting theory attributes these unique features to a new Néel-type of SkL describable as a superposition of spin cycloids in contrast to the Bloch-type SkL in chiral magnets described in terms of spin helices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison between Bloch- and Néel-type skyrmions following refs 4, 6.
Figure 2: Magnetic phases in the lacunar spinel GaV4S8.
Figure 3: Real-space imaging of the magnetic patterns in GaV4S8.
Figure 4: Small-angle neutron scattering study of the magnetic states in GaV4S8.
Figure 5: Tracing the magnetic phase boundaries by SANS.
Figure 6: Spin patterns in the magnetic phases of GaV4S8.

Similar content being viewed by others

References

  1. Bogdanov, A. N. & Yablonskii, D. A. Thermodynamically stable ‘vortices’ in magnetically ordered crystals. The mixed state of magnets. Zh. Eksp. Teor. Fiz. 95, 178–182 (1989).

    Google Scholar 

  2. Bogdanov, A. N. & Yablonskii, D. A. Contribution to the theory of inhomogeneous states of magnets in the region of magnetic-field-induced phase transitions. Mixed state of antiferromagnets. Zh. Eksp. Teor. Fiz. 96, 253–260 (1989).

    Google Scholar 

  3. Bogdanov, A. N. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255–269 (1994).

    Article  CAS  Google Scholar 

  4. Bogdanov, A. N. & Hubert, A. The properties of isolated magnetic vortices. Phys. Status Solidi b 186, 527–543 (1994).

    Article  CAS  Google Scholar 

  5. Rössler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 422, 797–801 (2006).

    Article  Google Scholar 

  6. Leonov, A. Twisted, Localized, and Modulated States Described in the Phenomenological Theory of Chiral and Nanoscale Ferromagnets PhD thesis (2014); http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-83823

    Google Scholar 

  7. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  Google Scholar 

  8. Münzer, W. et al. Skyrmion lattice in the doped semiconductor Fe1−xCoxSi. Phys. Rev. B 81, 041203(R) (2010).

    Article  Google Scholar 

  9. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  CAS  Google Scholar 

  10. Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nature Mater. 10, 106–109 (2011).

    Article  CAS  Google Scholar 

  11. Wilhelm, H. et al. Precursor phenomena at the magnetic ordering of the cubic helimagnet FeGe. Phys. Rev. Lett. 107, 127203 (2011).

    Article  CAS  Google Scholar 

  12. Seki, S., Yu, X. Z., Ishiwata, S. & Tokura, Y. Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012).

    Article  CAS  Google Scholar 

  13. Adams, T. et al. Long-wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3 . Phys. Rev. Lett. 108, 237204 (2012).

    Article  CAS  Google Scholar 

  14. Tonomura, A. et al. Real-space observation of skyrmion lattice in helimagnet MnSi thin samples. Nano Lett. 12, 1673–1677 (2012).

    Article  CAS  Google Scholar 

  15. Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

    Article  CAS  Google Scholar 

  16. Shibata, K. et al. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin–orbit coupling. Nature Nanotech. 8, 723–728 (2013).

    Article  CAS  Google Scholar 

  17. Park, H. S. et al. Observation of the magnetic flux and three dimensional structure of skyrmion lattices by electron holography. Nature Nanotech. 9, 337–342 (2014).

    Article  CAS  Google Scholar 

  18. Wilson, M. N. et al. Extended elliptic skyrmion gratings in epitaxial MnSi thin films. Phys. Rev. B 86, 144420 (2012).

    Article  Google Scholar 

  19. Wilson, M. N. et al. Chiral skyrmions in cubic helimagnet films: The role of uniaxial anisotropy. Phys. Rev. B 89, 094411 (2014).

    Article  Google Scholar 

  20. Ta Phouc, V. et al. Optical conductivity measurements of GaTa4Se8 under high pressure: Evidence of a bandwidth-controlled insulator-to-metal Mott transition. Phys. Rev. Lett. 110, 037401 (2013).

    Article  Google Scholar 

  21. Abd-Elmeguid, M. M. et al. Transition from Mott insulator to superconductor in GaNb4Se8 and GaTa4Se8 under high pressure. Phys. Rev. Lett. 93, 126403 (2004).

    Article  CAS  Google Scholar 

  22. Dorolti, E. et al. Half-metallic ferromagnetism and large negative magnetoresistance in the new lacunar spinel GaTi3VS8 . J. Am. Chem. Soc. 132, 5704–5710 (2010).

    Article  CAS  Google Scholar 

  23. Kim, H.-S., Im, J., Han, M. J. & Jin, H. Spin-orbital entangled molecular jeff states in lacunar spinel compounds. Nature Commun. 5, 3988 (2014).

    Article  CAS  Google Scholar 

  24. Guiot, V. et al. Avalanche breakdown in GaTa4Se8−xTex narrow-gap Mott insulators. Nature Commun. 4, 1722 (2013).

    Article  CAS  Google Scholar 

  25. Singh, K. et al. Orbital-ordering-driven multiferroicity and magnetoelectric coupling in GeV4S8 . Phys. Rev. Lett. 113, 137602 (2014).

    Article  Google Scholar 

  26. Pocha, R., Johrendt, D. & Pöttgen, R. Electronic and structural instabilities in GaV4S8 and GaMo4S8 . Chem. Mater. 12, 2882–2887 (2000).

    Article  CAS  Google Scholar 

  27. Ruff, E. et al. Ferroelectric skyrmions and a zoo of multiferroic phases in GaV4S8. Preprint at http://xxx.lanl.gov/abs/1504.00309 (2015)

  28. Okamoto, Y., Nilsen, G. J., Attfield, J. P. & Hiroi, Z. Breathing pyrochlore lattice realized in A-site ordered spinel oxides LiGaCr4O8 and LiInCr4O8 . Phys. Rev. Lett. 110, 097203 (2013).

    Article  Google Scholar 

  29. Kimura, K., Nakatsuji, S. & Kimura, T. Experimental realization of a quantum breathing pyrochlore antiferromagnet. Phys. Rev. B 90, 060414(R) (2014).

    Article  Google Scholar 

  30. Yadav, C. S., Nigam, A. K. & Rastogi, A. K. Thermodynamic properties of ferromagnetic Mott-insulator GaV4S8 . Physica B 403, 1474–1475 (2008).

    Article  CAS  Google Scholar 

  31. Nakamura, H. et al. Low-field multi-step magnetization of GaV4S8 single crystal. J. Phys. Conf. Ser. 145, 012077 (2009).

    Article  Google Scholar 

  32. Thessieu, C., Pfleiderer, C., Stepanov, A. N. & Flouquet, J. Field dependence of the magnetic quantum phase transition in MnSi. J. Phys. Condens. Matter 9, 6677–6687 (1997).

    Article  CAS  Google Scholar 

  33. Lamago, D., Georgii, R., Pfleiderer, C. & Böni, P. Magnetic-field induced instability surrounding the A-phase of MnSi: Bulk and SANS measurements. Physica B 385–386, 385–387 (2006).

    Article  Google Scholar 

  34. Pfleiderer, C. et al. Skyrmion lattices in metallic and semiconducting B20 transition metal compounds. J. Phys. Condens. Matter 22, 164207 (2010).

    Article  CAS  Google Scholar 

  35. Adams, T. et al. Long-range crystalline nature of the skyrmion lattice in MnSi. Phys. Rev. Lett. 107, 217206 (2011).

    Article  CAS  Google Scholar 

  36. Bak, P. & Jensen, M. H. Theory of helical magnetic structures and phase transitions in MnSi and FeGe. J. Phys. C: Solid State Phys. 13, L881–L885 (1980).

    Article  CAS  Google Scholar 

  37. White, J. S. et al. Electric-field-induced skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu2OSeO3 . Phys. Rev. Lett. 113, 107203 (2014).

    Article  CAS  Google Scholar 

  38. Dzyloshinskii, I. E. Theory of helicoidal structures in antiferromagnets. I. Nonmetals. Sov. Phys. JETP 19, 960–971 (1964).

    Google Scholar 

  39. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nature Phys. 7, 713–718 (2011).

    Article  CAS  Google Scholar 

  40. Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Article  CAS  Google Scholar 

  41. Romming, N., Kubetzka, A., Hanneken, C., von Bergmann, K. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015).

    Article  Google Scholar 

  42. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nature Nanotech. 8, 152–156 (2013).

    Article  CAS  Google Scholar 

  43. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nature Nanotech. 8, 839–844 (2013).

    Article  CAS  Google Scholar 

  44. Mochizuki, M. et al. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect. Nature Mater. 13, 241–246 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. A. K. V. Nidda and T. Fehér for useful discussions. This work was supported by the Hungarian Research Funds OTKA K 108918, OTKA PD 111756 and Bolyai 00565/14/11, by the European Research Council Project CONQUEST, by the Swiss NSF Grant Nos. 153451, 146870 and 141962, by the DFG under Grant No. SFB 1143 and via the Transregional Research Collaboration TRR 80 From Electronic Correlations to Functionality (Augsburg/Munich/Stuttgart) and by JSPS KAKENHI under Grant Nos. 25870169 and 25287088 from MEXT Japan.

Author information

Authors and Affiliations

Authors

Contributions

I.K., S.B., P.M., E.N., L.M.E., J.S.W., C.D.D., D.E. and V.T. performed the measurements; I.K., S.B., P.M., E.N., H.M.R., J.S.W. and A.L. analysed the data; V.T. and H.N. contributed to the sample preparation; M.M. and K.Y. developed the theory; I.K. wrote the manuscript and planned the project.

Corresponding author

Correspondence to I. Kézsmárki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 998 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kézsmárki, I., Bordács, S., Milde, P. et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nature Mater 14, 1116–1122 (2015). https://doi.org/10.1038/nmat4402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4402

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing