Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices

Abstract

Devices resident in the stomach—used for a variety of clinical applications including nutritional modulation for bariatrics, ingestible electronics for diagnosis and monitoring, and gastric-retentive dosage forms for prolonged drug delivery—typically incorporate elastic polymers to compress the devices during delivery through the oesophagus and other narrow orifices in the digestive system. However, in the event of accidental device fracture or migration, the non-degradable nature of these materials risks intestinal obstruction. Here, we show that an elastic, pH-responsive supramolecular gel remains stable and elastic in the acidic environment of the stomach but can be dissolved in the neutral-pH environment of the small and large intestines. In a large animal model, prototype devices with these materials as the key component demonstrated prolonged gastric retention and safe passage. These enteric elastomers should increase the safety profile for a wide range of gastric-retentive devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation, manufacturing and macroscopic characteristics of the enteric elastomer.
Figure 2: Physical characterization of the enteric elastomer.
Figure 3: Construction of a ring-shaped gastric-retentive device and in vitro testing of its elasticity and enteric property.
Figure 4: In vivo evaluation of the ring-shaped devices in Yorkshire pigs.
Figure 5: In vivo evaluation of M-shaped (30 mm × 30 mm × 4 mm), I-shaped (30 mm × 18 mm × 4 mm) and T-shaped (30 mm × 18 mm × 4 mm) devices.

Similar content being viewed by others

References

  1. Kethu, S. R. et al. Endoluminal bariatric techniques. Gastrointest. Endosc. 76, 1–7 (2012).

    Article  Google Scholar 

  2. Genco, A. et al. BioEnterics intragastric balloon: The Italian experience with 2,515 patients. Obes. Surg. 15, 1161–1164 (2005).

    Article  CAS  Google Scholar 

  3. Won, Y. W. et al. Oligopeptide complex for targeted non-viral gene delivery to adipocytes. Nature Mater. 13, 1157–1164 (2014).

    Article  CAS  Google Scholar 

  4. Tao, H. et al. Silk-based conformal, adhesive, edible food sensors. Adv. Mater. 24, 1067–1072 (2012).

    Article  CAS  Google Scholar 

  5. Kim, Y. J., Wu, W., Chun, S. E., Whitacre, J. F. & Bettinger, C. J. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proc. Natl Acad. Sci. USA 110, 20912–20917 (2013).

    Article  CAS  Google Scholar 

  6. Byrne, C. & Lim, C. L. The ingestible telemetric body core temperature sensor: A review of validity and exercise applications. Br. J. Sports. Med. 41, 126–133 (2007).

    Article  Google Scholar 

  7. Belknap, R. et al. Feasibility of an ingestible sensor-based system for monitoring adherence to tuberculosis therapy. PLoS ONE 8, e53373 (2013).

    Article  CAS  Google Scholar 

  8. Moes, A. J. Gastroretentive dosage forms. Crit. Rev. Ther. Drug 10, 143–195 (1993).

    CAS  Google Scholar 

  9. Hwang, S. J., Park, H. & Park, K. Gastric retentive drug-delivery systems. Crit. Rev. Ther. Drug 15, 243–284 (1998).

    Google Scholar 

  10. Singh, B. N. & Kim, K. H. Floating drug delivery systems: An approach to oral controlled drug delivery via gastric retention. J. Control Release 63, 235–259 (2000).

    Article  CAS  Google Scholar 

  11. Fuhrmann, G. et al. Sustained gastrointestinal activity of dendronized polymer–enzyme conjugates. Nature Chem. 5, 582–589 (2013).

    Article  CAS  Google Scholar 

  12. Laulicht, B., Gidmark, N. J., Tripathi, A. & Mathiowitz, E. Localization of magnetic pills. Proc. Natl Acad. Sci. USA 108, 2252–2257 (2011).

    Article  CAS  Google Scholar 

  13. Salessiotis, N. Measurement of the diameter of the pylorus in man: Part I. Experimental project for clinical application. Am. J. Surgery 124, 331–333 (1972).

    Article  CAS  Google Scholar 

  14. Munk, J. F., Gannaway, R. M., Hoare, M. & Johnson, A. G. in Gastrointestinal Motility in Health and Disease (ed Duthie, H. L.) Ch. 38, 349–359 (Springer, 1978).

    Book  Google Scholar 

  15. Sultan, M. & Norton, R. Esophageal diameter and the treatment of achalasia. Digest Dis. Sci. 14, 611–618 (1969).

    Article  CAS  Google Scholar 

  16. Vanstiegmann, G., Cambre, T. & Sun, J. H. A new endoscopic elastic band ligating device. Gastrointest. Endosc. 32, 230–233 (1986).

    Article  CAS  Google Scholar 

  17. Dumonceau, J. M. Evidence-based review of the bioenterics intragastric balloon for weight loss. Obes. Surg. 18, 1611–1617 (2008).

    Article  Google Scholar 

  18. Cheifetz, A. S. et al. The risk of retention of the capsule endoscope in patients with known or suspected Crohn’s disease. Am. J. Gastroenterol. 101, 2218–2222 (2006).

    Article  Google Scholar 

  19. McGovern, R., Barkin, J. S., Goldberg, R. I. & Phillips, R. S. Duodenal obstruction: A complication of percutaneous endoscopic gastrostomy tube migration. Am. J. Gastroenterol. 85, 1037–1038 (1990).

    CAS  Google Scholar 

  20. Trande, P. et al. Efficacy, tolerance and safety of new intragastric air-filled balloon (Heliosphere BAG) for obesity: The experience of 17 cases. Obes. Surg. 20, 1227–1230 (2010).

    Article  Google Scholar 

  21. Roman, S. et al. Intragastric balloon for “non-morbid” obesity: A retrospective evaluation of tolerance and efficacy. Obes. Surg. 14, 539–544 (2004).

    Article  Google Scholar 

  22. Traverso, G. & Langer, R. Perspective: Special delivery for the gut. Nature 519, S19 (2015).

    Article  CAS  Google Scholar 

  23. Lappas, L. C. & Mckeehan, W. Synthetic polymers as potential enteric and sustained-release coatings. J. Pharm. Sci. 51, 808 (1962).

    Article  CAS  Google Scholar 

  24. Siepmann, F., Siepmann, J., Walther, M., MacRae, R. J. & Bodmeier, R. Polymer blends for controlled release coatings. J. Control Release 125, 1–15 (2008).

    Article  CAS  Google Scholar 

  25. Yan, X. Z., Wang, F., Zheng, B. & Huang, F. H. Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev. 41, 6042–6065 (2012).

    Article  CAS  Google Scholar 

  26. Wojtecki, R. J., Meador, M. A. & Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nature Mater. 10, 14–27 (2011).

    Article  CAS  Google Scholar 

  27. Li, J. H., Viveros, J. A., Wrue, M. H. & Anthamatten, M. Shape-memory effects in polymer networks containing reversibly associating side-groups. Adv. Mater. 19, 2851–2855 (2007).

    Article  CAS  Google Scholar 

  28. Yan, X. Z. et al. A multiresponsive, shape-persistent, and elastic supramolecular polymer network gel constructed by orthogonal self-assembly. Adv. Mater. 24, 362–369 (2012).

    Article  CAS  Google Scholar 

  29. Jang, S. G., Kramer, E. J. & Hawker, C. J. Controlled supramolecular assembly of micelle-like gold nanoparticles in PS-b-P2VP diblock copolymers via hydrogen bonding. J. Am. Chem. Soc. 133, 16986–16996 (2011).

    Article  CAS  Google Scholar 

  30. Tee, B. C. K., Wang, C., Allen, R. & Bao, Z. N. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotech. 7, 825–832 (2012).

    Article  CAS  Google Scholar 

  31. Chen, Y. L., Kushner, A. M., Williams, G. A. & Guan, Z. B. Multiphase design of autonomic self-healing thermoplastic elastomers. Nature Chem. 4, 467–472 (2012).

    Article  CAS  Google Scholar 

  32. Schaaf, P. & Schlenoff, J. B. Saloplastics: Processing compact polyelectrolyte complexes. Adv. Mater. 27, 2420–2432 (2015).

    Article  CAS  Google Scholar 

  33. Lendlein, A., Neffe, A. T. & Jérôme, C. Advanced functional polymers for medicine. Adv. Healthc. Mater. 3, 1939–1940 (2014).

    Article  CAS  Google Scholar 

  34. Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater. 9, 101–113 (2010).

    Article  Google Scholar 

  35. Sathish, D., Himabindu, S., Kumar, Y. S. & Shayeda Rao, Y. M. Floating drug delivery systems for prolonging gastric residence time: A review. Curr. Drug Deliv. 8, 494–510 (2011).

    Article  CAS  Google Scholar 

  36. Phadke, A. et al. Rapid self-healing hydrogels. Proc. Natl Acad. Sci. USA 109, 4383–4388 (2012).

    Article  CAS  Google Scholar 

  37. Luzar, A. & Chandler, D. Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations. J. Chem. Phys. 98, 8160–8173 (1993).

    Article  CAS  Google Scholar 

  38. Woodruff, M. A. & Hutmacher, D. W. The return of a forgotten polymer–polycaprolactone in the 21st century. Prog. Polym. Sci. 35, 1217–1256 (2010).

    Article  CAS  Google Scholar 

  39. Kearney, C. J. & Mooney, D. J. Macroscale delivery systems for molecular and cellular payloads. Nature Mater. 12, 1004–1017 (2013).

    Article  CAS  Google Scholar 

  40. Khosla, R. & Davis, S. S. The effect of tablet size on the gastric emptying of non-disintegrating tablets. Int. J. Pharm. 62, R9–R11 (1990).

    Article  CAS  Google Scholar 

  41. Cargill, R. et al. Controlled gastric emptying. 1. effects of physical properties on gastric residence times of nondisintegrating geometric shapes in beagle dogs. Pharm. Res. 5, 533–536 (1988).

    Article  CAS  Google Scholar 

  42. Martinez, M. N. & Papich, M. G. Factors influencing the gastric residence of dosage forms in dogs. J. Pharm. Sci. 98, 844–860 (2009).

    Article  CAS  Google Scholar 

  43. Swindle, M. M., Makin, A., Herron, A. J., Clubb, F. J. & Frazier, K. S. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 49, 344–356 (2012).

    Article  CAS  Google Scholar 

  44. Cooper, A. R. & Matzinger, D. P. Aqueous gel permeation chromatography: The effect of solvent ionic strength. J. Appl. Polym. Sci. 23, 419–427 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the Bill and Melinda Gates Foundation Grant OPP1096734 (to R.L.) and the NIH Grant EB000244 (to R.L.). The paper was partly sponsored by the Alexander von Humboldt Foundation under the auspices of the Max Planck Research Award to R.L. funded by the Federal Ministry of Education and Research. A.M.B. was supported in part by NIH T32 5T32HL007604-29. J.Z. was supported by the Laboratory Directed Research and Development program at Oak Ridge National Laboratory, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. We would like to thank J. Haupt and M. Jamiel for expert veterinary support. We are indebted to L. Wood, P. Eckhoff, D. Hartman, S. Kern, S. Hershenson and B. Nikolic for fruitful discussions that stimulated the development of this material. The findings and conclusions reported in this paper are those of the authors and do not necessarily reflect positions or policies of the Bill and Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.Z., R.L. and G.T. designed the material and experiments. S.Z. prepared the material and the device. S.Z., A.M.B., D.L.G., R.B., Y.-A.L.L., J.Z., V.A.M., C.C., L.D.N., D.J.M., L.G. and G.T. characterized the material, analysed the data and wrote the paper. R.L. and G.T. supervised the research. All authors discussed the progress of research and reviewed the manuscript.

Corresponding authors

Correspondence to Robert Langer or Giovanni Traverso.

Ethics declarations

Competing interests

The authors declare Provisional US patent application No. 62/010,992 filed on 11 June 2014.

Supplementary information

Supplementary Information

Supplementary Information (PDF 812 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Bellinger, A., Glettig, D. et al. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nature Mater 14, 1065–1071 (2015). https://doi.org/10.1038/nmat4355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4355

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing