Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films

Abstract

There is keen interest in the use of amorphous WO3 thin films as cathodic electrodes in transmittance-modulating electrochromic devices1,2,3,4. However, these films suffer from ion-trapping-induced degradation of optical modulation and reversibility on extended Li+-ion exchange. Here, we demonstrate that ion-trapping-induced degradation, which is commonly believed to be irreversible, can be successfully eliminated by constant-current-driven de-trapping; that is, WO3 films can be rejuvenated and regain their initial highly reversible electrochromic performance. Pronounced ion trapping occurs when x exceeds 0.65 in LixWO3 during ion insertion. We find two main kinds of Li+-ion-trapping site (intermediate and deep) in WO3, where the intermediate ones are most prevalent. Li+ ions can be completely removed from intermediate traps but are irreversibly bound in deep traps. Our results provide a general framework for developing and designing superior electrochromic materials and devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rejuvenation assessment for WO3 films.
Figure 2: Electrochromic performance of WO3 films under varied operations.
Figure 3: Dynamics of ion trapping and de-trapping in WO3 thin films.
Figure 4: Ion-trapping-induced optical performance of WO3 thin films.

Similar content being viewed by others

References

  1. Llordes, A., Garcia, G., Gazquez, J. & Milliron, D. J. Tunable near-infrared and visible light transmittance in nanocrystal-in-glass composites. Nature 500, 323–332 (2013).

    Article  CAS  Google Scholar 

  2. Granqvist, C. G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 564, 1–38 (2014).

    Article  CAS  Google Scholar 

  3. Niklasson, G. A. & Granqvist, C. G. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17, 127–156 (2007).

    Article  CAS  Google Scholar 

  4. Granqvist, C. G. Electrochromic materials: Out of a niche. Nature Mater. 5, 89–90 (2006).

    Article  CAS  Google Scholar 

  5. Granqvist, C. G. Handbook of Inorganic Electrochromic Materials (Elsevier, 1995).

    Google Scholar 

  6. Faughnan, B. W., Crandall, R. S. & Heyman, P. M. Electrochromism in WO3 amorphous films. RCA Rev. 36, 177–197 (1975).

    CAS  Google Scholar 

  7. Hashimoto, S. & Matsuoka, H. Prolonged lifetime of electrochromism of amorphous WO3–TiO2 thin films. Surf. Interface Anal. 19, 464–468 (1992).

    Article  CAS  Google Scholar 

  8. Arvizu, M. A., Triana, C. A., Stefanov, B. I., Granqvist, C. G. & Niklasson, G. A. Electrochromism in sputter-deposited W–Ti oxide films: Durability enhancement due to Ti. Sol. Energy Mater. Sol. Cells 125, 184–189 (2014).

    Article  CAS  Google Scholar 

  9. Hashimoto, S. & Matsuoka, H. Lifetime and electrochromism of amorphous WO3–TiO2 thin films. J. Electrochem. Soc. 138, 2403–2408 (1991).

    Article  CAS  Google Scholar 

  10. Niklasson, G. A., Malmgren, S., Green, S. & Backholm, J. Determination of electronic structure by impedance spectroscopy. J. Non-Cryst. Solids 356, 705–709 (2010).

    Article  CAS  Google Scholar 

  11. Bressers, P. M. M. C. & Meulenkamp, E. A. The electrochromic behavior of indium tin oxide in propylene carbonate solutions. J. Electrochem. Soc. 145, 2225–2230 (1998).

    Article  CAS  Google Scholar 

  12. Li, W.-J. & Fu, Z.-W. Nanostructured WO3 thin film as a new anode material for lithium-ion batteries. Appl. Surf. Sci. 256, 2447–2452 (2010).

    Article  CAS  Google Scholar 

  13. Hashimoto, S., Matsuoka, H., Kagechika, H., Susa, M. & Goto, K. S. Degradation of electrochromic amorphous WO3 film in lithium-salt electrolyte. J. Electrochem. Soc. 137, 1300–1304 (1990).

    Article  CAS  Google Scholar 

  14. Bisquert, J. Analysis of the kinetics of ion intercalation: Ion trapping approach to solid-state relaxation processes. Electrochim. Acta 47, 2435–2449 (2002).

    Article  CAS  Google Scholar 

  15. Garcia-Belmonte, G., Bueno, P. R., Fabregat-Santiago, F. & Bisquert, J. Relaxation processes in the coloration of amorphous WO3 thin films studied by combined impedance and electro-optical measurements. J. Appl. Phys. 96, 853–859 (2004).

    Article  CAS  Google Scholar 

  16. Fabregat-Santiago, F. et al. Dynamic processes in the coloration of WO3 by lithium insertion. J. Electrochem. Soc. 148, E302–E309 (2001).

    Article  CAS  Google Scholar 

  17. Bisquert, J. & Vikhrenko, V. S. Analysis of the kinetics of ion intercalation. Two state model describing the coupling of solid state ion diffusion and ion binding processes. Electrochim. Acta 47, 3977–3988 (2002).

    Article  CAS  Google Scholar 

  18. Bisquert, J. Fractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walk. Phys. Rev. Lett. 91, 010602 (2003).

    Article  Google Scholar 

  19. Bisquert, J. Beyond the quasistatic approximation: Impedance and capacitance of an exponential distribution of traps. Phys. Rev. B 77, 235203 (2008).

    Article  Google Scholar 

  20. Berggren, L., Jonsson, J. C. & Niklasson, G. A. Optical absorption in lithiated tungsten oxide thin films: Experiment and theory. J. Appl. Phys. 102, 083538 (2007).

    Article  Google Scholar 

  21. Hjelm, A., Granqvist, C. G. & Wills, J. M. Electronic structure and optical properties of WO3, LiWO3, NaWO3, and HWO3 . Phys. Rev. B 54, 2436–2445 (1996).

    Article  CAS  Google Scholar 

  22. Yoon, S., Woo, S-G., Jung, K.-N. & Song, H. Conductive surface modification of cauliflower-like WO3 and its electrochemical properties for lithium-ion batteries. J. Alloys Compd. 613, 187–192 (2014).

    Article  CAS  Google Scholar 

  23. Knowles, T. J. Optical regeneration of aged WO3 electrochromic cells. Appl. Phys. Lett. 31, 817–818 (1977).

    Article  CAS  Google Scholar 

  24. Mayer, M. SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. Am. Inst. Phys. Conf. Proc. 475, 541–544 (1999).

    CAS  Google Scholar 

  25. Ulfheil, J., Würsig, A., Schneider, O. D. & Novák, P. Acetone as oxidative decomposition product in propylene carbonate containing battery electrolyte. Electrochem. Commun. 7, 1380–1384 (2005).

    Article  Google Scholar 

  26. Georén, P. & Lindbergh, G. On the use of voltammetric methods to determine electrochemical stability limits for lithium battery electrolytes. J. Power Sources 124, 213–220 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support with RBS measurements from D. Primetzhofer and the staff of the Tandem accelerator laboratory at Uppsala University. Assistance was received from M. Arvizu and C. Triana for sample preparation. Financial support was received from the European Research Council under the European Community’s Seventh Framework Program (FP7/2007–2013)/ERC Grant Agreement No. 267234 (‘GRINDOOR’).

Author information

Authors and Affiliations

Authors

Contributions

R.-T.W conceived the idea, designed and performed the experiments. R.-T.W. carried out the data analysis with help from G.A.N. and C.G.G. R.-T.W., G.A.N. and C.G.G. co-wrote the manuscript. G.A.N. and C.G.G. supervised and supported the work.

Corresponding author

Correspondence to Rui-Tao Wen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, RT., Granqvist, C. & Niklasson, G. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nature Mater 14, 996–1001 (2015). https://doi.org/10.1038/nmat4368

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing