Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ferroelectric polarization reversal via successive ferroelastic transitions

Abstract

Switchable polarization makes ferroelectrics a critical component in memories, actuators and electro-optic devices, and potential candidates for nanoelectronics. Although many studies of ferroelectric switching have been undertaken, much remains to be understood about switching in complex domain structures and in devices. In this work, a combination of thin-film epitaxy, macro- and nanoscale property and switching characterization, and molecular dynamics simulations are used to elucidate the nature of switching in PbZr0.2Ti0.8O3 thin films. Differences are demonstrated between (001)-/(101)- and (111)-oriented films, with the latter exhibiting complex, nanotwinned ferroelectric domain structures with high densities of 90° domain walls and considerably broadened switching characteristics. Molecular dynamics simulations predict both 180° (for (001)-/(101)-oriented films) and 90° multi-step switching (for (111)-oriented films) and these processes are subsequently observed in stroboscopic piezoresponse force microscopy. These results have implications for our understanding of ferroelectric switching and offer opportunities to change domain reversal speed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PFM studies of PbZr0.2Ti0.8O3 films.
Figure 2: Electrical characterization of PbZr0.2Ti0.8O3 films.
Figure 3: MD simulations of switching in ferroelectrics with 90° domain walls.
Figure 4: PFM switching studies of PbZr0.2Ti0.8O3 (101) thin films.
Figure 5: PFM switching studies of PbZr0.2Ti0.8O3(111) thin films.

Similar content being viewed by others

References

  1. Hoffman, J. et al. Ferroelectric field effect transistors for memory applications. Adv. Mater. 22, 2957–2961 (2010).

    Article  CAS  Google Scholar 

  2. Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2012).

    Article  Google Scholar 

  3. Eom, C. B. & Trolier-McKinstry, S. Thin-film piezoelectric MEMS. MRS Bull. 37, 1007–1021 (2012).

    CAS  Google Scholar 

  4. Wessels, B. W. Ferroelectric epitaxial thin-films for integrated optics. Annu. Rev. Mater. Res. 37, 659–679 (2007).

    Article  CAS  Google Scholar 

  5. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    Article  CAS  Google Scholar 

  6. Martin, L. W. & Schlom, D. G. Advanced synthesis techniques and routes to new single-phase multiferroics. Curr. Opin. Solid State Mater. Sci. 16, 199–215 (2012).

    Article  CAS  Google Scholar 

  7. Nagarajan, V. et al. Thickness dependence of structural and electrical properties in epitaxial lead zirconate titanate films. J. Appl. Phys. 86, 595–602 (1999).

    Article  CAS  Google Scholar 

  8. Li, Y. L., Hu, S. Y., Liu, Z. K. & Chen, L. Q. Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl. Phys. Lett. 81, 427–429 (2002).

    Article  CAS  Google Scholar 

  9. Pertsev, N. A., Arlt, G. & Zembilgotov, A. G. Domain-wall and intrinsic contributions to the dielectric response of epitaxial ferroelectric films. Microelectron. Eng. 29, 135–140 (1995).

    Article  CAS  Google Scholar 

  10. Xu, F. et al. Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 89, 1336–1348 (2001).

    Article  CAS  Google Scholar 

  11. Karthik, J., Damodaran, A. R. & Martin, L. W. Effect of 90° domain walls on the low-field permittivity of PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 108, 167601 (2012).

    Article  CAS  Google Scholar 

  12. Kim, D. J., Maria, J. P., Kingon, A. I. & Streiffer, S. K. Evaluation of intrinsic and extrinsic contributions to the piezoelectric properties of Pb(Zr1−xTix)O3 thin films as a function of composition. J. Appl. Phys. 93, 5568–5575 (2003).

    Article  CAS  Google Scholar 

  13. Bruchhaus, R., Pitzer, D., Schreiter, M. & Wersing, W. Optimized PZT thin films for pyroelectric IR detector arrays. J. Electroceram. 3, 151–162 (1999).

    Article  CAS  Google Scholar 

  14. Karthik, J. & Martin, L. W. Pyroelectric properties of polydomain epitaxial Pb(Zr1−xTix)O3 thin films. Phys. Rev. B 84, 024102 (2011).

    Article  Google Scholar 

  15. Pertsev, N. A., Kukhar, V. G., Kohlstedt, H. & Waser, R. Phase diagrams and physical properties of single-domain epitaxial Pb(Zr1−xTix)O3 thin films. Phys. Rev. B 67, 054107 (2003).

    Article  Google Scholar 

  16. Pertsev, N. A. & Zembilgotov, A. G. Domain populations in epitaxial ferroelectric thin films: Theoretical calculations and comparison with experiment. J. Appl. Phys. 80, 6401–6406 (1996).

    Article  CAS  Google Scholar 

  17. Saito, K., Kurosawa, T., Akai, T., Oikawa, T. & Funakubo, H. Structural characterization and 90 degrees domain contribution to ferroelectricity of epitaxial Pb(Zr0.35, Ti0.65)O3 thin films. J. Appl. Phys. 93, 545–550 (2003).

    Article  CAS  Google Scholar 

  18. Oikawa, T., Aratani, M., Funakubo, H., Saito, K. & Mizuhira, M. Composition and orientation dependence of electrical properties of epitaxial Pb(ZrxTi1−x)O3 thin films grown using metalorganic chemical vapor deposition. J. Appl. Phys. 95, 3111–3115 (2004).

    Article  CAS  Google Scholar 

  19. Xu, R., Karthik, J., Damodaran, A. R. & Martin, L. W. Stationary domain wall contribution to enhanced ferroelectric susceptibility. Nature Commun. 5, 3120 (2014).

    Article  Google Scholar 

  20. Bernal, A., Zhang, S. J. & Bassiri-Gharb, N. Effects of orientation and composition on the extrinsic contributions to the dielectric response of relaxor-ferroelectric single crystals. Appl. Phys. Lett. 95, 142911 (2009).

    Article  Google Scholar 

  21. Wada, S., Yako, K., Kakemoto, H., Tsurumi, T. & Kiguchi, T. Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J. Appl. Phys. 98, 014109 (2005).

    Article  Google Scholar 

  22. Grigoriev, A. et al. Nanosecond domain wall dynamics in ferroelectric Pb(Zr, Ti)O3 thin films. Phys. Rev. Lett. 96, 187601 (2006).

    Article  Google Scholar 

  23. Jo, J. Y. et al. Nanosecond dynamics of ferroelectric/dielectric superlattices. Phys. Rev. Lett. 107, 055501 (2011).

    Article  Google Scholar 

  24. Zubko, P., Stucki, N., Lichtensteiger, C. & Triscone, J. M. X-ray diffraction studies of 180° ferroelectric domains in PbTiO3/SrTiO3 superlattices under an applied electric field. Phys. Rev. Lett. 104, 187601 (2010).

    Article  CAS  Google Scholar 

  25. Kalinin, S. V. et al. Defect-mediated polarization switching in ferroelectrics and related materials: From mesoscopic mechanisms to atomistic control. Adv. Mater. 22, 314–322 (2010).

    Article  CAS  Google Scholar 

  26. Gruverman, A. et al. Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl. Phys. Lett. 87, 082902 (2005).

    Article  Google Scholar 

  27. Nelson, C. T. et al. Domain dynamics during ferroelectric switching. Science 334, 968–971 (2011).

    Article  CAS  Google Scholar 

  28. Winkler, C. R., Damodaran, A. R., Karthik, J., Martin, L. W. & Taheri, M. L. Direct observation of ferroelectric domain switching in varying electric field regimes using in situ TEM. Micron 43, 1121–1126 (2012).

    Article  CAS  Google Scholar 

  29. Chang, H. J. et al. Watching domains grow: In-situ studies of polarization switching by combined scanning probe and scanning transmission electron microscopy. J. Appl. Phys. 110, 052014 (2011).

    Article  Google Scholar 

  30. Phillpot, S. R., Sinnott, S. B. & Asthagiri, A. Atomic-level simulation of ferroelectricity in oxides: Current status and opportunities. Annu. Rev. Mater. Res. 37, 239–270 (2007).

    Article  CAS  Google Scholar 

  31. Sepliarsky, M., Phillpot, S. R., Wolf, D., Stachiotti, M. G. & Migoni, R. L. Atomic-level simulation of ferroelectricity in perovskite solid solutions. Appl. Phys. Lett. 76, 3986–3988 (2000).

    Article  CAS  Google Scholar 

  32. Liu, S., Grinberg, I., Takenaka, H. & Rappe, A. M. Reinterpretation of bond-valence model with bond-order formalism: An improved bond-valence-based interatomic potential for PbTiO3 . Phys. Rev. B 88, 104102 (2013).

    Article  Google Scholar 

  33. Liu, S., Grinberg, I. & Rappe, A. M. Development of a bond-valence based interatomic potential for BiFeO3 for accurate molecular dynamics simulations. J. Phys. Condens. Matter. 25, 102202 (2013).

    Article  Google Scholar 

  34. Sepliarsky, M., Stachiotti, M. G. & Migoni, R. L. Surface reconstruction and ferroelectricity in PbTiO3 thin films. Phys. Rev. B 72, 014110 (2005).

    Article  Google Scholar 

  35. Takenaka, H., Grinberg, I. & Rappe, A. M. Anisotropic local correlations and dynamics in a relaxor ferroelectric. Phys. Rev. Lett. 110, 147602 (2013).

    Article  Google Scholar 

  36. Shin, Y. H., Grinberg, I., Chen, I. W. & Rappe, A. M. Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature 449, 881–887 (2007).

    Article  CAS  Google Scholar 

  37. Roytburd, A. L. Equilibrium structure of epitaxial layers. Phys. Status Solidi A 37, 329–339 (1976).

    Article  Google Scholar 

  38. Ouyang, J. et al. Engineering of self-assembled domain architectures with ultra-high piezoelectric response in epitaxial ferroelectric films. Adv. Funct. Mater. 17, 2094–2100 (2007).

    Article  CAS  Google Scholar 

  39. Romanov, A. E., Vojta, A., Pompe, W., Lefevre, M. J. & Speck, J. S. Domain patterns in (111) oriented tetragonal ferroelectric films. Phys. Status Solidi A 172, 225–253 (1999).

    Article  CAS  Google Scholar 

  40. Karthik, J., Damodaran, A. R. & Martin, L. W. Epitaxial ferroelectric heterostructures fabricated by selective area epitaxy of SrRuO3 using an MgO mask. Adv. Mater. 24, 1610–1615 (2012).

    Article  CAS  Google Scholar 

  41. Bassiri-Gharb, N. et al. Domain wall contributions to the properties of piezoelectric thin films. J. Electroceram. 19, 47–65 (2007).

    Article  CAS  Google Scholar 

  42. Sluka, T., Tagantsev, A. K., Dmajanovic, D., Gureev, M. & Setter, N. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nature Commun. 3, 748 (2012).

    Article  Google Scholar 

  43. Kamel, T. M. & de With, G. Double peak switching current in soft ferroelectric lead zirconate titanate. J. Appl. Phys. 102, 044118 (2007).

    Article  Google Scholar 

  44. Yin, J. & Cao, W. Polarization reversal study using ultrasound. Appl. Phys. Lett. 79, 4556–4558 (2001).

    Article  CAS  Google Scholar 

  45. Daniels, J. E. et al. Neutron diffraction study of the polarization reversal mechanism in [111]C-oriented Pb(Zn1/3Nb2/3)O3−xPbTiO3 . J. Appl. Phys. 101, 104108 (2007).

    Article  Google Scholar 

  46. Pramanick, A., Prewitt, A. D., Forrester, J. S. & Jones, J. L. Domains, domain walls and defects in perovskite ferroelectric oxides: A review of present understanding and recent contributions. Crit. Rev. Solid State Mater. Sci. 37, 243–275 (2012).

    Article  CAS  Google Scholar 

  47. Nagarajan, V. et al. Dynamics of ferroelastic domains in ferroelectric thin films. Nature Mater. 2, 43–47 (2003).

    Article  CAS  Google Scholar 

  48. Anbusathaiah, V. et al. Labile ferroelastic nanodomains in bilayered ferroelectric thin films. Adv. Mater. 21, 3497–3502 (2009).

    Article  CAS  Google Scholar 

  49. Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B 65, 104111 (2002).

    Article  Google Scholar 

  50. Gao, P. et al. Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching. Nature Commun. 4, 2791 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

R.X. and S.L. acknowledge support from the National Science Foundation and the Nanoelectronics Research Initiative under grant DMR-1124696. I.G. acknowledges support from the US DOE under grant DE-FG02-07ER46431. J.K. acknowledges support from the National Science Foundation under grant DMR-1451219. A.R.D. and L.W.M. acknowledge support from the Army Research Office under grant W911NF-14-1-0104. A.M.R. acknowledges support from the Office of Naval Research under grant N00014-12-1-1033. The authors acknowledge computational support from the High-Performance Computing Modernization Office of the Department of Defense, and from the National Energy Research Scientific Computing Center of the Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

R.X. and L.W.M. designed the experiments. S.L., I.G. and A.M.R. designed the simulation strategy. R.X. performed the experiments. S.L. carried out the MD simulations. R.X., J.K., A.R.D. and L.W.M. analysed the experimental results. S.L., I.G. and A.M.R. analysed the simulation results. R.X., S.L., I.G., A.M.R. and L.W.M. co-wrote the paper.

Corresponding author

Correspondence to Lane W. Martin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2526 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Liu, S., Grinberg, I. et al. Ferroelectric polarization reversal via successive ferroelastic transitions. Nature Mater 14, 79–86 (2015). https://doi.org/10.1038/nmat4119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing