Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Etchable plasmonic nanoparticle probes to image and quantify cellular internalization

Abstract

There is considerable interest in using nanoparticles as labels or to deliver drugs and other bioactive compounds to cells in vitro and in vivo. Fluorescent imaging, commonly used to study internalization and subcellular localization of nanoparticles, does not allow unequivocal distinction between cell surface-bound and internalized particles, as there is no methodology to turn particles ‘off’. We have developed a simple technique to rapidly remove silver nanoparticles outside living cells, leaving only the internalized pool for imaging or quantification. The silver nanoparticle (AgNP) etching is based on the sensitivity of Ag to a hexacyanoferrate–thiosulphate redox-based destain solution. In demonstration of the technique we present a class of multicoloured plasmonic nanoprobes comprising dye-labelled AgNPs that are exceptionally bright and photostable, carry peptides as model targeting ligands, can be etched rapidly and with minimal toxicity in mice, and that show tumour uptake in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dye-labelled, peptide-functionalized silver nanoparticles (AgNPs) that are etched for cell internalization and tracking.
Figure 2: Nanoparticle characterization and toxicity screening.
Figure 3: Flow cytometry with AgNPs.
Figure 4: Tracking AgNPs within live cells.
Figure 5: Distinguishing individual AgNPs of different colours, in cancer cells and tumours.
Figure 6: In vivo etching.

Similar content being viewed by others

References

  1. Tassa, C., Shaw, S. Y. & Weissleder, R. Dextran-coated iron oxide nanoparticles: A versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res. 44, 842–852 (2011).

    Article  CAS  Google Scholar 

  2. Ruoslahti, E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater. 24, 3747–3756 (2012).

    Article  CAS  Google Scholar 

  3. Chithrani, B. D. & Chan, W. C. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550 (2007).

    Article  CAS  Google Scholar 

  4. Goulet, P. J., Bourret, G. R. & Lennox, R. B. Facile phase transfer of large, water-soluble metal nanoparticles to nonpolar solvents. Langmuir 28, 2909–2913 (2012).

    Article  CAS  Google Scholar 

  5. Moller, J. et al. Dissolution of iron oxide nanoparticles inside polymer nanocapsules. Phys. Chem. Chem. Phys. 13, 20354–20360 (2011).

    Article  Google Scholar 

  6. Cho, E. C., Xie, J., Wurm, P. A. & Xia, Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 9, 1080–1084 (2009).

    Article  CAS  Google Scholar 

  7. Sun, Y. & Xia, Y. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 128, 686–691 (2003).

    Article  CAS  Google Scholar 

  8. Lakowicz, J. R. Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 337, 171–194 (2005).

    Article  CAS  Google Scholar 

  9. Zhang, F. et al. Fabrication of Ag@SiO(2)@Y(2)O(3):Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 132, 2850–2851 (2010).

    Article  CAS  Google Scholar 

  10. Mulvihill, M. J., Ling, X. Y., Henzie, J. & Yang, P. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc. 132, 268–274 (2010).

    Article  CAS  Google Scholar 

  11. Braun, G. B. et al. Generalized approach to SERS-active nanomaterials via controlled nanoparticle linking, polymer encapsulation, and small-molecule infusion. J. Phys. Chem. C 113, 13622–13629 (2009).

    Article  CAS  Google Scholar 

  12. Bharadwaj, P. & Novotny, L. Spectral dependence of single molecule fluorescence enhancement. Opt. Express 15, 14266–14274 (2007).

    Article  CAS  Google Scholar 

  13. Kim, J. H., Estabrook, R. A., Braun, G., Lee, B. R. & Reich, N. O. Specific and sensitive detection of nucleic acids and RNases using gold nanoparticle–RNA–fluorescent dye conjugates. Chem. Commun. 4342–4344 (2007).

  14. Teesalu, T., Sugahara, K. N., Kotamraju, V. R. & Ruoslahti, E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl Acad. Sci. USA 106, 16157–16162 (2009).

    Article  CAS  Google Scholar 

  15. Meywald, T., Scherthan, H. & Nagl, W. Increased specificity of colloidal silver staining by means of chemical attenuation. Hereditas 124, 63–70 (1996).

    Article  CAS  Google Scholar 

  16. Scheler, C. et al. Peptide mass fingerprint sequence coverage from differently stained proteins on two-dimensional electrophoresis patterns by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Electrophoresis 19, 918–927 (1998).

    Article  CAS  Google Scholar 

  17. Koley, D. & Bard, A. J. Triton X-100 concentration effects on membrane permeability of a single HeLa cell by scanning electrochemical microscopy (SECM). Proc. Natl Acad. Sci. USA 107, 16783–16787 (2010).

    Article  CAS  Google Scholar 

  18. Cardozo, R. H., Edelman, I. S. & Moore, F. D. Sodium thiosulfate dilution as a measure of the volume of fluid outside of body cells. Surgical Forum 606–611 (1951).

  19. Liu, N., Hentschel, M., Weiss, T., Alivisatos, A. P. & Giessen, H. Three-dimensional plasmon rulers. Science 332, 1407–1410 (2011).

    Article  CAS  Google Scholar 

  20. Malicka, J., Gryczynski, I., Gryczynski, Z. & Lakowicz, J. R. Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides. Anal. Biochem. 315, 57–66 (2003).

    Article  CAS  Google Scholar 

  21. Burdinski, D. & Blees, M. H. Thiosulfate-and thiosulfonate-based etchants for the patterning of gold using microcontact printing. Chem. Mater. 19, 3933–3944 (2007).

    Article  CAS  Google Scholar 

  22. Van Duijn, M. M. Ascorbate stimulates ferricyanide reduction in HL-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase. J. Biol. Chem. 273, 13415–13420 (1998).

    Article  CAS  Google Scholar 

  23. De Jong, W. H. et al. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials 34, 8333–8343 (2013).

    Article  CAS  Google Scholar 

  24. Lakowicz, J. R. et al. Radiative decay engineering: 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal. Biochem. 301, 261–277 (2002).

    Article  CAS  Google Scholar 

  25. Sugahara, K. N. et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16, 510–520 (2009).

    Article  CAS  Google Scholar 

  26. Teesalu, T., Sugahara, K. N. & Ruoslahti, E. Mapping of vascular ZIP codes by phage display. Methods Enzymol. 503, 35–56 (2012).

    Article  CAS  Google Scholar 

  27. McFarland, A. D. & Van Duyne, R. P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003).

    Article  CAS  Google Scholar 

  28. Roth, L. et al. Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene 31, 3754–3763 (2012).

    Article  CAS  Google Scholar 

  29. Vaira, V. et al. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc. Natl Acad. Sci. USA 107, 8352–8356 (2010).

    Article  CAS  Google Scholar 

  30. Chen, R. et al. Application of a proapoptotic peptide to intratumorally spreading cancer therapy. Cancer Res. 73, 1352–1361 (2013).

    Article  CAS  Google Scholar 

  31. Ruoslahti, E., Bhatia, S. N. & Sailor, M. J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol. 188, 759–768 (2010).

    Article  CAS  Google Scholar 

  32. Zweens, J., Frankena, H., Rispens, P. & Zijlstra, W. G. Determination of extracellular fluid volume in the dog with ferrocyanide. Pflugers Arch. 357, 275–290 (1975).

    Article  CAS  Google Scholar 

  33. Mendel, B. The action of ferricyanide on tumour cells. Am. J. Cancer 30, 549–552 (1937).

    Article  CAS  Google Scholar 

  34. Gillies, R. J., Schornack, P. A., Secomb, T. W. & Raghunand, N. Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1, 197–207 (1999).

    Article  CAS  Google Scholar 

  35. Lin, E. Y. et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am. J. Pathol. 163, 2113–2126 (2003).

    Article  Google Scholar 

  36. Agemy, L. et al. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc. Natl Acad. Sci. USA 108, 17450–17455 (2011).

    Article  CAS  Google Scholar 

  37. Sugahara, K. N. et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328, 1031–1035 (2010).

    Article  CAS  Google Scholar 

  38. Farokhzad, O. C. et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl Acad. Sci. USA 103, 6315–6320 (2006).

    Article  CAS  Google Scholar 

  39. Chuntonov, L., Bar-Sadan, M., Houben, L. & Haran, G. Correlating electron tomography and plasmon spectroscopy of single noble metal core-shell nanoparticles. Nano Lett. 12, 145–150 (2012).

    Article  CAS  Google Scholar 

  40. Gu, H., Yang, Z., Gao, J., Chang, C. K. & Xu, B. Heterodimers of nanoparticles: Formation at a liquid-liquid interface and particle-specific surface modification by functional molecules. J. Am. Chem. Soc. 127, 34–35 (2005).

    Article  CAS  Google Scholar 

  41. Pallaoro, A., Braun, G. B. & Moskovits, M. Quantitative ratiometric discrimination between noncancerous and cancerous prostate cells based on neuropilin-1 overexpression. Proc. Natl Acad. Sci. USA 108, 16559–16564 (2011).

    Article  CAS  Google Scholar 

  42. Uozumi, J., Ishizawa, M., Iwamoto, Y. & Baba, T. Sodium thiosulfate inhibits cis-diamminedichloroplatinum (II) activity. Cancer Chemother. Pharmacol. 13, 82–85 (1984).

    Article  CAS  Google Scholar 

  43. Koyfman, A. Y. et al. Controlled spacing of cationic gold nanoparticles by nanocrown RNA. J. Am. Chem. Soc. 127, 11886–11887 (2005).

    Article  CAS  Google Scholar 

  44. Koyfman, A. Y., Braun, G. B. & Reich, N. O. Cell-targeted self-assembled DNA nanostructures. J. Am. Chem. Soc. 131, 14237–14239 (2009).

    Article  CAS  Google Scholar 

  45. Idili, A., Plaxco, K. W., Vallee-Belisle, A. & Ricci, F. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches. ACS Nano 7, 10863–10869 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US DoD awards W81XWH-10-1-0199 and W81XWH-09-0698; R01 CA152327, R01 CA167174, and CA 030199 (Cancer Center Support grant) from the NCI; and by the Defense Advanced Research Projects Agency (DARPA) under Cooperative Agreement HR0011-13-2-0017. The findings and views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense or the US Government. Approved for Public Release, Distribution Unlimited. G.B.B. was supported by the Cancer Center of Santa Barbara and by an NIH training grant (T32 CA121949), and A-M.A.W., and T.T. by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Starting Grant Agreement No. 291910. The authors thank L. Agemy, R. Chen and M. Moskovits for helpful discussions, A. K-Clark for assistance and technical support with ICP-MS, F. Zhang for guidance in Ag synthesis, F. Vitti for helpful discussions on silver amplification, J. Wang for flow cytometry assistance, the NRI-MCDB Microscopy Facility at UCSB, and Histology and Cellular Imaging cores at the Sanford-Burnham Medical Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

G.B.B., T.T. and E.R. initiated the research and G.B.B., H-B.P., T.F., A.P., T.H.dM., A-M.A.W., Z-G.S. and A.P.M. designed and performed experiments. K.S., T.T., N.O.R. and E.R. supervised the research. V.R.K. synthesized peptides. G.B.B. and E.R. wrote the manuscript. All authors contributed to analysing data and revising the manuscript.

Corresponding authors

Correspondence to Gary B. Braun or Erkki Ruoslahti.

Ethics declarations

Competing interests

The authors declare that K.N.S., V.R.K., T.T. and E.R. have ownership interest (including patents) in CendR Therapeutics. E.R. is also founder, chairman of the board of CendR Therapeutics. No potential conflicts of interest were disclosed by the other authors.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1617 kb)

Supplementary Information

Supplementary Movie 1 (MOV 2428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, G., Friman, T., Pang, HB. et al. Etchable plasmonic nanoparticle probes to image and quantify cellular internalization. Nature Mater 13, 904–911 (2014). https://doi.org/10.1038/nmat3982

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3982

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research