Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling

Abstract

Nonlinear optical excitation of infrared active lattice vibrations has been shown to melt magnetic or orbital orders and to transform insulators into metals. In cuprates, this technique has been used to remove charge stripes and promote superconductivity, acting in a way opposite to static magnetic fields. Here, we show that excitation of large-amplitude apical oxygen distortions in the cuprate superconductor YBa2Cu3O6.5 promotes highly unconventional electronic properties. Below the superconducting transition temperature (Tc = 50 K) inter-bilayer coherence is transiently enhanced at the expense of intra-bilayer coupling. Strikingly, even above Tc a qualitatively similar effect is observed up to room temperature, with transient inter-bilayer coherence emerging from the incoherent ground state and similar transfer of spectral weight from high to low frequency. These observations are compatible with previous reports of an inhomogeneous normal state that retains important properties of a superconductor, in which light may be melting competing orders or dynamically synchronizing the interlayer phase. The transient redistribution of coherence discussed here could lead to new strategies to enhance superconductivity in steady state.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bilayer structure and c axis optical features in superconducting YBa2Cu3O6.5.
Figure 2: Transient imaginary conductivity at low frequencies and broadband loss function response at 10 K (T < Tc).
Figure 3: Transient real part of the conductivity of YBa2Cu3O6.5 at T = 10 K (T < Tc).
Figure 4: Transient optical properties above Tc (at T = 60 K).
Figure 5: Low-frequency transient optical properties below and far above Tc.

Similar content being viewed by others

References

  1. Anderson, P. W. Interlayer tunneling mechanism for high-Tc superconductivity: Comparison with c axis infrared experiments. Science 268, 1154–1155 (1995).

    Article  CAS  Google Scholar 

  2. Shibata, H. & Yamada, T. Double Josephson plasma resonance in T* phase SmLa1 − xSrxCuO4 − δ . Phys. Rev. Lett. 81, 3519–3522 (1998).

    Article  CAS  Google Scholar 

  3. van der Marel, D. & Tsvetkov, A. A. Transverse-optical Josephson plasmons: Equations of motion. Phys. Rev. B 64, 024530 (2001).

    Article  CAS  Google Scholar 

  4. van der Marel, D. & Tsvetkov, A. Transverse optical plasmons in layered superconductors. Czech. J. Phys. 46, 3165–3168 (1996).

    Article  CAS  Google Scholar 

  5. Shah, N. & Millis, A. J. Superconductivity, phase fluctuations and the c-axis conductivity in bi-layer high temperature superconductors. Phys. Rev. B 65, 024506 (2001).

    Article  CAS  Google Scholar 

  6. Homes, C. C. et al. Optical properties along the c-axis of YBa2Cu3O6 + x, for x = 0.50 → 0.95 evolution of the pseudogap. Physica C 254, 265–280 (1995).

    Article  CAS  Google Scholar 

  7. Timusk, T. & Homes, C. C. The role of magnetism in forming the c-axis spectral peak at 400 cm−1 in high temperature superconductors. Solid State Commun. 126, 63–69 (2003).

    Article  CAS  Google Scholar 

  8. Kakeshita, T. et al. Transverse Josephson plasma mode in T* cuprate superconductors. Phys. Rev. Lett. 86, 4140–4143 (2001).

    Article  CAS  Google Scholar 

  9. Dulić, D. et al. Observation of the transverse optical plasmon in SmLa0.8Sr0.2CuO4 − δ . Phys. Rev. Lett. 86, 4144–4147 (2001).

    Article  CAS  Google Scholar 

  10. Hirata, Y. et al. Correlation between the interlayer Josephson coupling strength and an enhanced superconducting transition temperature of multilayer cuprate superconductors. Phys. Rev. B 85, 054501 (2012).

    Article  CAS  Google Scholar 

  11. Chaloupka, J., Bernhard, C. & Munzar, D. Microscopic gauge invariant theory of the c-axis infrared response of bi-layer cuprate superconductors and the origin of the superconductivity-induced absorption bands. Phys. Rev. B 79, 184513 (2009).

    Article  CAS  Google Scholar 

  12. Munzar, D. et al. Anomalies of the infared-active phonons in underdoped YBa2Cu3Oy as an evidence for the intra-bilayer Josephson effect. Solid State Commun. 112, 365–369 (1999).

    Article  CAS  Google Scholar 

  13. Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    Article  CAS  Google Scholar 

  14. Caviglia, A. D. et al. Ultrafast strain engineering in complex oxide heterostructures. Phys. Rev. Lett. 108, 136801 (2012).

    Article  CAS  Google Scholar 

  15. Choy, T. C. Effective Medium Theory: Principles and Applications (Oxford Univ. Press, 1999).

    Google Scholar 

  16. Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature 414, 286–289 (2001).

    Article  CAS  Google Scholar 

  17. Berg, E. et al. Dynamical layer decoupling in a stripe-ordered high-Tc superconductor. Phys. Rev. Lett. 99, 127003 (2007).

    Article  CAS  Google Scholar 

  18. Grüner, G. Density Waves in Solids (Addison-Wesley, 1994).

    Google Scholar 

  19. Blanco-Canosa, S. et al. Momentum-dependent charge correlations in YBa2Cu3O6 + δ superconductors probed by resonant X-ray scattering: Evidence for three competing phases. Phys. Rev. Lett. 110, 187001 (2013).

    Article  CAS  Google Scholar 

  20. Eliashberg, G. M. Film superconductivity stimulated by a high-frequency field. JETP Lett. 11, 114–116 (1970).

    Google Scholar 

  21. Ivlev, B. I. & Eliashberg, G. M. Influence of nonequilibrium excitations on the properties of superconducting films in a high-frequency field. JETP Lett. 13, 333–336 (1971).

    Google Scholar 

  22. Owen, C. S. & Scalapino, D. J. Superconducting state under the influence of external dynamic pair breaking. Phys. Rev. Lett. 28, 1559–1561 (1972).

    Article  Google Scholar 

  23. Anderson, P. W. & Dayem, A. H. Radio-frequency effects in superconducting thin film bridges. Phys. Rev. Lett. 13, 195–197 (1964).

    Article  Google Scholar 

  24. Wyatt, A. F. G. et al. Microwave-enhanced critical supercurrents in constricted tin films. Phys. Rev. Lett. 16, 1166–1169 (1966).

    Article  CAS  Google Scholar 

  25. Dayem, A. H. & Wiegand, J. J. Behavior of thin-film superconducting bridges in a microwave field. Phys. Rev 155, 419–428 (1967).

    Article  CAS  Google Scholar 

  26. Escudero, R. & Smith, H. J. T. Energy-gap enhancement in superconducting tin by microwaves. Phys. Rev. B 31, 2725–2728 (1985).

    Article  CAS  Google Scholar 

  27. Beck, M. et al. Transient increase in the energy gap of superconducting NbN thin films excited by resonant narrowband TeraHertz pulses. Phys. Rev. Lett. 110, 267003 (2013).

    Article  CAS  Google Scholar 

  28. Yu, G. et al. Transient photoinduced conductivity in single crystals of YBa2Cu3O6.3: ‘Photodoping’ to the metallic state. Phys. Rev. Lett. 67, 2581–2584 (1991).

    Article  CAS  Google Scholar 

  29. Nieva, G. et al. Photo-induced enhancement of superconductivity. Appl. Phys. Lett. 60, 2159–2161 (1992).

    Article  CAS  Google Scholar 

  30. Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nature Phys. 7, 854–856 (2011).

    Article  CAS  Google Scholar 

  31. Först, M. et al. Displacive lattice excitation through nonlinear phononics viewed by femtosecond X-ray diffraction. Solid State Commun. 169, 24–27 (2013).

    Article  CAS  Google Scholar 

  32. Först, M. et al. Driving magnetic order in a manganite by ultrafast lattice excitation. Phys. Rev. B. 84, 241104(R) (2011).

    Article  CAS  Google Scholar 

  33. Tobey, R. I. et al. Ultrafast electronic phase transition in La1/2Sr3/2MnO4 by coherent vibrational excitation: Evidence for nonthermal melting of orbital order. Phys. Rev. Lett. 101, 197404 (2009).

    Article  CAS  Google Scholar 

  34. McElroy, K. et al. Coincidence of checkerboard charge order and antinodal state decoherence in strongly underdoped superconducting Bi2Sr2CaCu2O8 + δ . Phys. Rev. Lett. 94, 197005 (2005).

    Article  CAS  Google Scholar 

  35. Wu, T. et al. Magnetic-field-induced charge-stripe order in the high temperature superconductor YBa2Cu3Oy . Nature 477, 191–194 (2011).

    Article  CAS  Google Scholar 

  36. Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y, Nd)Ba2Cu3O6 + x . Science 337, 821–825 (2012).

    Article  CAS  Google Scholar 

  37. Fausti, D. et al. Light induced superconductivity in a striped ordered cuprate. Science 331, 189–191 (2011).

    Article  CAS  Google Scholar 

  38. Pavarini, E. et al. Band-structure trend in hole-doped cuprates and correlation with Tc, max . Phys. Rev. Lett. 87, 047003 (2001).

    Article  CAS  Google Scholar 

  39. Weber, C., Haule, K. & Kotliar, G. Apical oxygens and correlation strength in electron- and hole-doped copper oxides. Phys. Rev. B 82, 125107 (2010).

    Article  CAS  Google Scholar 

  40. Slezak, J. A. et al. Imaging the impact on cuprate superconductivity of varying the interatomic distances within individual crystal unit cells. Proc. Natl Acad. Sci. USA 105, 3203–3208 (2008).

    Article  Google Scholar 

  41. Mori, M. et al. Origin of the spatial variation of the pairing gap in Bi-based high temperature cuprate superconductors. Phys. Rev. Lett. 101, 247003 (2008).

    Article  CAS  Google Scholar 

  42. Sakakibara, H. et al. Two-orbital model explains the higher transition temperature of the single-layer Hg-cuprate superconductor compared to that of the La-cuprate superconductor. Phys. Rev. Lett. 05, 057003 (2010).

    Article  CAS  Google Scholar 

  43. Dubroka, A. et al. Evidence of a precursor superconducting phase at temperatures as high as 180 K in RBa2Cu3O7 − δ (R = Y, Gd, Eu) superconducting crystals from infrared spectroscopy. Phys. Rev. Lett. 106, 047006 (2011).

    Article  CAS  Google Scholar 

  44. Kapitza, P. L. Dynamic stability of a pendulum with an oscillating point of suspension. Zh. Eksp. Teor. Fiz. 21, 588–597 (1951).

    Google Scholar 

  45. Landau, L. D. & Lifschitz, E. M. Mechanics (Pergamon, 1976).

    Google Scholar 

  46. Overhauser, A. W. Polarization of nuclei in metals. Phys. Rev. 92, 411–415 (1953).

    Article  CAS  Google Scholar 

  47. Baskaran, G. Superradiant Superconductivity. Preprint at http://arxiv.org/abs/1211.4567 (2012)

  48. Gomes, K.K. et al. Visualizing pair formation on the atomic scale in the high Tc superconductor Bi2Sr2CaCu2O8 + δ . Nature 447, 569–572 (2007).

    Article  CAS  Google Scholar 

  49. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    Article  CAS  Google Scholar 

  50. Corson, J. et al. Vanishing of phase coherence in underdoped Bi2Sr2CaCuO8 + δ . Nature 398, 221–223 (1999).

    Article  CAS  Google Scholar 

  51. Xu, Z. A. et al. Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2 − xSrxCuO4 . Nature 406, 486–488 (2000).

    Article  CAS  Google Scholar 

  52. Bilbro, L. S. et al. Temporal correlations of superconductivity above the transition temperature in La2 − xSrxCuO4 probed by THz spectroscopy. Nature Phys. 7, 298–302 (2011).

    Article  CAS  Google Scholar 

  53. Calestani, G. & Rizzoli, C. Crystal structure of the YBa2Cu3O7 superconductor by single-crystal X-ray diffraction. Nature 328, 606–607 (1987).

    Article  CAS  Google Scholar 

  54. Burns, G. et al. Phonons in YBa2Cu3O7 − δ-type materials. Phys. Rev. B 37, 5171–5174 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. Orenstein, S Kivelson, D. Basov, D. van der Marel, C. Bernhard, A. Leitenstorfer and L. Zhang for extensive discussions, for their many suggestions and advice on the data analysis. Technical support from J. Harms and H. Liu is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

A.C. conceived the project. W.H. and I.G. performed the measurements with broadband gas source. D.N., C.R.H. and S.K. performed the narrowband measurements. W.H., C.R.H., D.N. and I.G. analysed the data and discussed results with all authors. W.H. built the mid-infrared pump–broadband terahertz probe set-up with the support of M.C.H. The mid-infrared pump–narrowband terahertz probe set-up was built by S.K. and D.N. YBa2Cu3O6.5 single crystals were synthesized by T.L., with guidance from M.L.T. and B.K. The manuscript was written by A.C. together with W.H. and S.K., and with input from all authors.

Corresponding author

Correspondence to A. Cavalleri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1917 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Kaiser, S., Nicoletti, D. et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nature Mater 13, 705–711 (2014). https://doi.org/10.1038/nmat3963

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3963

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing