Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrostatic control of block copolymer morphology

Abstract

Energy storage is at present one of the foremost issues society faces. However, material challenges now serve as bottlenecks in technological progress1. Lithium-ion batteries are the current gold standard to meet energy storage needs; however, they are limited owing to the inherent instability of liquid electrolytes1,2. Block copolymers can self-assemble into nanostructures that simultaneously facilitate ion transport and provide mechanical stability. The ions themselves have a profound, yet previously unpredictable, effect on how these nanostructures assemble and thus the efficiency of ion transport3. Here we demonstrate that varying the charge of a block copolymer is a powerful mechanism to predictably tune nanostructures. In particular, we demonstrate that highly asymmetric charge cohesion effects can induce the formation of nanostructures that are inaccessible to conventional uncharged block copolymers, including percolated phases desired for ion transport. This vastly expands the design space for block copolymer materials and is informative for the versatile design of battery electrolyte materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of block copolyelectrolytes and discussion of neutral block copolymers and charge solubility effects.
Figure 2: Effect of charge cohesion on nanostructure phase behaviour.
Figure 3: Charge control of percolating nanostructures.
Figure 4: Effect of charge fraction on nanostructure phase behaviour.

Similar content being viewed by others

References

  1. Armand, M. & Tarascon, J-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  2. Hallinan, D. T. Jr. & Balsara, N. P. Polymer electrolytes. Annu. Rev. Mater. Res. 43, 503–525 (2013).

    Article  CAS  Google Scholar 

  3. Wanakule, N. S., Virgili, J. M., Teran, A. A., Wang, Z-G. & Balsara, N. P. Thermodynamic properties of block copolymer electrolytes containing imidazolium and lithium salts. Macromolecules 43, 8282–8289 (2010).

    Article  CAS  Google Scholar 

  4. Soo, P. P. et al. Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries. J. Electrochem. Soc. 146, 32–37 (1999).

    Article  CAS  Google Scholar 

  5. Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature Mater. 12, 452–457 (2013).

    Article  CAS  Google Scholar 

  6. Borodin, O. & Smith, G. D. Mechanism of ion transport in amorphous poly(ethylene oxide)/LTFSI from molecular dynamics simulations. Macromolecules 39, 1620–1629 (2006).

    Article  CAS  Google Scholar 

  7. Sax, J. & Ottino, J. M. Modeling of transport of small molecules in polymer blends: Application of effective medium theory. Pol. Eng. Sci. 23, 165–176 (1983).

    Article  CAS  Google Scholar 

  8. Elabd, Y. A., Napadensky, E., Walker, C. W. & Winey, K. I. Transport properties of sulfonated poly(styrene-b-isobutylene-b-styrene) triblock copolymers at high ion-exchange capacities. Macromolecules 39, 399–407 (2006).

    Article  CAS  Google Scholar 

  9. Fredrickson, G. H. The Equilibrium Theory of Inhomogenous Polymers (Oxford Univ. Press, 2006).

    Google Scholar 

  10. Kim, S. O. et al. Epitaxial self-assembly of block copolymers on lithographically defined nano patterned substrates. Nature 424, 411–414 (2003).

    Article  CAS  Google Scholar 

  11. Nie, Z. & Kumacheva, E. Patterning surfaces with functional polymers. Nature Mater. 7, 277–290 (2008).

    Article  CAS  Google Scholar 

  12. Tavokkoli, A. et al. Templating three-dimensional self-assembled structures in bilayer block copolymer films. Science 336, 1294–1298 (2012).

    Article  Google Scholar 

  13. Angelescu, D. E. et al. Macroscopic orientation of block copolymer cylinders in single-layer films by shearing. Adv. Mater. 16, 1736–1740 (2004).

    Article  CAS  Google Scholar 

  14. Cui, H., Chen, Z., Zhong, S., Wooley, K. L. & Pochan, D. J. Block copolymer assembly via kinetic control. Science 317, 647–650 (2007).

    Article  CAS  Google Scholar 

  15. Kim, S. H., Misner, M. J., Xu, T., Kimura, M. & Russell, T. P. Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv. Mater. 16, 226–231 (2004).

    Article  CAS  Google Scholar 

  16. Kumar, R. & Muthukumar, M. Microphase separation in polyelectrolytic diblock copolymer melt: Weak segregation limit. J. Chem. Phys. 126, 214902 (2007).

    Article  Google Scholar 

  17. Yang, S., Vishnyakov, A. & Neimark, A. V. Self-assembly in block polyelectrolytes. J. Chem. Phys. 134, 054104 (2011).

    Article  Google Scholar 

  18. Marko, J. F. & Rabin, Y. Microphase separation of charged diblock copolymers: Melts and solutions. Macromolecules 25, 1503–1509 (1992).

    Article  CAS  Google Scholar 

  19. Wang, Q., Taniguchi, T. & Fredrickson, G. H. Self-consistent field theory of polyelectrolyte systems. J. Phys. Chem. B 108, 6733–6744 (2004).

    Article  CAS  Google Scholar 

  20. Wang, Z-G. Effects of ion solvation on the miscibility of binary polymer blends. J. Phys. Chem. B 112, 16205–16213 (2008).

    Article  CAS  Google Scholar 

  21. Nakamura, I., Balsara, N. P. & Wang, Z-G. Thermodynamics of ion-containing polymer blends and block copolymers. Phys. Rev. Lett. 107, 198301 (2011).

    Article  Google Scholar 

  22. Sing, C. E., Zwanikken, J. & Olvera de la Cruz, M. Interfacial behavior in polyelectrolyte blends: Hybrid liquid-state integral equation and self-consistent field theory study. Phys. Rev. Lett. 111, 168303 (2013).

    Article  Google Scholar 

  23. Zwanikken, J. W., Jha, P. K. & Olvera de la Cruz, M. A practical integral equation for the structure and thermodynamics of hard sphere Coulomb fluids. J. Chem. Phys. 135, 064106 (2011).

    Article  Google Scholar 

  24. Sing, C. E., Zwanikken, J. & Olvera de la Cruz, M. Ion correlation-induced phase separation in polyelectrolyte blends. ACS Macro Lett. 2, 1042–1046 (2013).

    Article  CAS  Google Scholar 

  25. Huang, J., Tong, Z-Z., Zhou, B., Xu, J-T. & Fan, Z-Q. Salt-induced microphase separation in poly(ε-caprolactone)-b-poly(ethylene oxide) block copolymer. Polymer 54, 3098–3106 (2013).

    Article  CAS  Google Scholar 

  26. Zhou, N. C., Burghardt, W. R. & Winey, K. I. Blend miscibility of suffocated polystyrene ionomers with polystyrene: Effect of counterion valency and neutralization level. Macromolecules 40, 6401–6405 (2007).

    Article  CAS  Google Scholar 

  27. Park, M. J. & Balsara, N. P. Phase behavior of symmetric sulfonated block copolymers. Macromolecules 41, 3678–3687 (2008).

    Article  CAS  Google Scholar 

  28. Park, M. J., Kim, S., Minor, A. M., Hexemer, A. & Balsara, N. P. Control of domain orientation in block copolymer electrolyte membranes at the interface with humid air. Adv. Mater. 21, 203–208 (2009).

    Article  CAS  Google Scholar 

  29. Goswami, M. et al. Tunable morphologies from charged block copolymers. Soft Matter 6, 6146–6154 (2010).

    Article  CAS  Google Scholar 

  30. Wang, X., Goswami, M., Kumar, R., Sumpter, B. G. & Mays, J. Morphologies of block copolymers composed of charged and neutral blocks. Soft Matter 8, 3036–3052 (2012).

    Article  CAS  Google Scholar 

  31. Kang, Y., Walish, J. J., Gorishnyy, T. & Thomas, E. L. Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nature Mater. 6, 957–960 (2007).

    Article  CAS  Google Scholar 

  32. Bockstaller, M. R., Mickiewicz, R. A. & Thomas, E. L. Block copolymer nanocomposites: Perspectives for tailored functional materials. Adv. Mater. 17, 1331–1349 (2005).

    Article  CAS  Google Scholar 

  33. Kataoka, K., Harada, A. & Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 47, 113–131 (2001).

    Article  CAS  Google Scholar 

  34. Olson, D. A., Chen, L. & Hillmyer, M. A. Templating nanoporous polymers with ordered block copolymers. Chem. Mater. 20, 869–890 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from NSF grant number DMR-1309027. C.E.S. thanks the Northwestern International Institute for Nanotechnology for an International Institute for Nanotechnology Postdoctoral Fellowship, J. McGinnis for helpful comments on the manuscript, and A. F. Hannon for help with three-dimensional block copolymer visualization. The computational cluster is funded by the Office of the Director of Defense Research and Engineering (DDR&E) and the Air Force Office of Scientific Research (AFOSR) under Award no. FA9551-10-1-0167.

Author information

Authors and Affiliations

Authors

Contributions

C.E.S., J.W.Z. and M.O.C. designed the research. C.E.S. and J.W.Z. developed the theoretical methods with input from M.O.C. C.E.S. performed the calculations. All authors contributed to the interpretation of the data and wrote the manuscript.

Corresponding author

Correspondence to Monica Olvera de la Cruz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1853 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sing, C., Zwanikken, J. & Olvera de la Cruz, M. Electrostatic control of block copolymer morphology. Nature Mater 13, 694–698 (2014). https://doi.org/10.1038/nmat4001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing