Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Caloric materials near ferroic phase transitions

Abstract

A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caloric publications in recent decades.
Figure 2: Selected caloric effects at phase transitions near and away from room temperature.
Figure 3: Selected components from the 1978 magnetocaloric refrigerator prototype with a record temperature span of ThTc = 80 K.

Similar content being viewed by others

References

  1. Gough, J. A description of a property of caoutchouc or Indian rubber; with some reflections on the cause of the elasticity of this substance. Mem. Lit. Phil. Soc. Manchester 1 (2nd Series), 288–295 (1805).

    Google Scholar 

  2. Joule, J. P. On some thermo-dynamic properties of solids. Phil. Trans. 149, 91–131 (1859).

    Article  Google Scholar 

  3. Thomson, W. On the thermoelastic and thermomagnetic properties of matter, Part I. Quart. J. Math. (April 1855).

  4. Thomson, W. On the thermoelastic, thermomagnetic, and pyroelectric properties of matter. Lond. Edinb. Dublin Phil. Mag. J. Sci. 5, 4–27 (1878).

    Article  Google Scholar 

  5. Smith, A. Who discovered the magnetocaloric effect? Eur. Phys. J. H 38, 507–517 (2013).

    Article  Google Scholar 

  6. Warburg, E. Magnetische Untersuchungen. Ann. Phys. 249, 141–164 (1881).

    Article  Google Scholar 

  7. Weiss, P. & Piccard, A. Le phénomène magnétocalorique. J. Phys. Theor. Appl. 7, 103–109 (1917).

    Article  Google Scholar 

  8. Kobeko, P. & Kurtschatov, J. Dielektrische Eigenschaften der Seignettesalzkristalle. Z. Phys. 66, 192–205 (1930).

    Article  CAS  Google Scholar 

  9. Giauque, W. F. & MacDougall, D. P. Attainment of temperatures below 1° absolute by demagnetization of Gd2(SO4)3·8H2O. Phys. Rev. 43, 768 (1933).

    Article  CAS  Google Scholar 

  10. Collins, S. C. & Zimmerman, F. J. Cyclic adiabatic demagnetization. Phys. Rev. 90, 991–992 (1953).

    Article  Google Scholar 

  11. Heer, C. V., Barnes, C. B. & Daunt, J. G. The design and operation of a magnetic refrigerator for maintaining temperatures below l °K. Rev. Sci. Instrum. 25, 1088–1098 (1954).

    Article  CAS  Google Scholar 

  12. Brown, G. V. Magnetic heat pumping near room temperature. J. Appl. Phys. 47, 3673–3680 (1976).

    Article  CAS  Google Scholar 

  13. Rodríguez, C. & Brown, L. C. The thermal effect due to stress-induced martensite formation in β-CuAlNi single crystals. Metall. Trans. A 11, 147–150 (1980).

    Article  Google Scholar 

  14. Nikitin, S. A. et al. The magnetocaloric effect in Fe49Rh51 compound. Phys. Lett. A. 148, 363–366 (1990).

    Article  CAS  Google Scholar 

  15. Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W. & Mathur, N. D. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3 . Science 311, 1270–1271 (2006).

    Article  CAS  Google Scholar 

  16. Neese, B. et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821–823 (2008).

    Article  CAS  Google Scholar 

  17. Pecharsky, V. K. & Gschneidner, K. A. Jr Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494–4497 (1997).

    Article  CAS  Google Scholar 

  18. de Oliveira, N. A. Entropy change upon magnetic field and pressure variations. Appl. Phys. Lett. 90, 052501 (2007).

    Article  CAS  Google Scholar 

  19. Bonnot, E., Romero, R., Mañosa, Ll., Vives, E. & Planes, A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys. Rev. Lett. 100, 125901 (2008).

    Article  CAS  Google Scholar 

  20. Mañosa, Ll. et al. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nature Mater. 9, 478–481 (2010).

    Article  CAS  Google Scholar 

  21. Fähler, S. et al. Caloric effects in ferroic materials: new concepts for cooling. Adv. Eng. Mater. 14, 10–19 (2012).

    Article  CAS  Google Scholar 

  22. Pecharsky, V. K. & Gschneidner, K. A. Jr Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200, 44–56 (1999).

    Article  CAS  Google Scholar 

  23. Gschneidner, K. A., Pecharsky, V. K. & Tsokol, A. O. Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005).

    Article  CAS  Google Scholar 

  24. Brück, E. Developments in magnetocaloric refrigeration. J. Phys. D 38, R381–R391 (2005).

    Article  CAS  Google Scholar 

  25. Franco, V., Blázquez, J. S., Ingale, B. & Conde, A. The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu. Rev. Mater. Res. 42, 305–342 (2012).

    Article  CAS  Google Scholar 

  26. Smith, A. et al. Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Energy Mater. 2, 1288–1318 (2012).

    Article  CAS  Google Scholar 

  27. Correia, T. & Zhang, Q. (eds) Electrocaloric Materials (Springer, 2014).

    Book  Google Scholar 

  28. Lu, S. G. & Zhang, Q. Electrocaloric materials for solid-state refrigeration. Adv. Mater. 21, 1983–1987 (2009).

    Article  CAS  Google Scholar 

  29. Scott, J. F. Electrocaloric materials. Annu. Rev. Mater. Res. 41, 229–240 (2011).

    Article  CAS  Google Scholar 

  30. Valant, M. Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci. 57, 980–1009 (2012).

    Article  CAS  Google Scholar 

  31. Yuce, S. et al. Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2 . Appl. Phys. Lett. 101, 071906 (2012).

    Article  CAS  Google Scholar 

  32. Mañosa, Ll. et al. Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound. Nature Commun. 2, 595 (2011).

    Article  CAS  Google Scholar 

  33. Müller, K. A. et al. Cooling by adiabatic pressure application in Pr1− xLaxNiO3 . Appl. Phys. Lett. 73, 1056–1058 (1998).

    Article  Google Scholar 

  34. Strässle, Th., Furrer, A., Hossain, Z. & Geibel, Ch. Magnetic cooling by the application of external pressure in rare-earth compounds. Phys. Rev. B 67, 054407 (2003).

    Article  CAS  Google Scholar 

  35. Brown, L. C. The thermal effect in pseudoelastic single crystals of β-CuZnSn. Metall. Trans. A 12, 1491–1494 (1981).

    Article  CAS  Google Scholar 

  36. Cui, J. et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl. Phys. Lett. 101, 073904 (2012).

    Article  CAS  Google Scholar 

  37. Shaw, J. A. & Kyriakides, S. Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43, 1243–1281 (1995).

    Article  CAS  Google Scholar 

  38. Pieczyska, E. A., Gadaj, S. P., Nowacki, W. K. & Tobushi, H. Phase-transformation fronts evolution for stress- and strain-controlled tension tests in TiNi shape memory alloy. Exp. Mech. 46, 531–542 (2006).

    Article  CAS  Google Scholar 

  39. Bechtold, C., Chluba, C., Lima de Miranda, R. & Quandt, E. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. Appl. Phys. Lett. 101, 091903 (2012).

    Article  CAS  Google Scholar 

  40. Soto-Parra, D. E. et al. Stress- and magnetic field-induced entropy changes in Fe-doped Ni–Mn–Ga shape-memory alloys. Appl. Phys. Lett. 96, 071912 (2010).

    Article  CAS  Google Scholar 

  41. Levitin, R. Z., Snegirev, V. V., Kopylov, A. V., Lagutin, A. S. & Gerber, A. Magnetic method of magnetocaloric effect determination in high pulsed magnetic fields. J. Magn. Magn. Mater. 170, 223–227 (1997).

    Article  CAS  Google Scholar 

  42. Dan'kov, S. Yu., Tishin, A. M., Pecharsky, V. K. & Gschneidner, K. A. Jr Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys. Rev. B 57, 3478–3490 (1998).

    Article  CAS  Google Scholar 

  43. Casanova, F. et al. Direct observation of the magnetic-field-induced entropy change in Gd5(SixGe1− x)4 giant magnetocaloric alloys. Appl. Phys. Lett. 86, 262504 (2005).

    Article  CAS  Google Scholar 

  44. Moya, X. et al. Calorimetric study of the inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn. J. Magn. Magn. Mater. 316, e572–e574 (2007).

    Article  CAS  Google Scholar 

  45. Christensen, D. V. et al. Spatially resolved measurements of the magnetocaloric effect and the local magnetic field using thermography. J. Appl. Phys. 108, 063913 (2010).

    Article  CAS  Google Scholar 

  46. Thacher, P. D. Electrocaloric effects in some ferroelectric and antiferroelectric Pb(Zr, Ti)O3 compounds. J. Appl. Phys. 39, 1996–2002 (1968).

    Article  CAS  Google Scholar 

  47. Tuttle, B. A. & Payne, D. A. The effects of microstructure on the electrocaloric properties of Pb(Zr, Sn, Ti)O3 ceramics. Ferroelectrics 37, 603–606 (1981).

    Article  CAS  Google Scholar 

  48. Wiseman, G. G. & Kuebler, J. K. Electrocaloric effect in ferroelectric Rochelle salt. Phys. Rev. 131, 2023–2027 (1963).

    Article  CAS  Google Scholar 

  49. Moya, X. et al. Giant electrocaloric strength in single-crystal BaTiO3 . Adv. Mater. 25, 1360–1365 (2013).

    Article  CAS  Google Scholar 

  50. Lu, S. G., Rožič, B., Zhang, Q. M., Kutnjak, Z. & Neese, B. Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol% copolymer at ferroelectric–paraelectric transition. Appl. Phys. Lett. 98, 122906 (2011).

    Article  CAS  Google Scholar 

  51. Lu, S. G. et al. Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers. Appl. Phys. Lett. 97, 202901 (2010).

    Article  CAS  Google Scholar 

  52. Kar-Narayan, S. & Mathur, N. D. Direct and indirect electrocaloric measurements using multilayer capacitors. J. Phys. D 43, 032002 (2010).

    Article  CAS  Google Scholar 

  53. Kar-Narayan, S. et al. Direct electrocaloric measurements of a multilayer capacitor using scanning thermal microscopy and infra-red imaging. Appl. Phys. Lett. 102, 032903 (2013).

    Article  CAS  Google Scholar 

  54. Tishin, A. M. & Spichkin, Y. I. The Magnetocaloric Effect and its Applications (Institute of Physics, 2003).

    Book  Google Scholar 

  55. Yu, B., Liu, M., Egolf, P. W. & Kitanovski, A. A review of magnetic refrigerator and heat pump prototypes built before the year 2010. Int. J. Refrig. 33, 1029–1060 (2010).

    Article  CAS  Google Scholar 

  56. Annaorazov, M. P., Nikitin, S. A., Tyurin, A. L., Asatryan, K. A. & Dovletov, A. Kh. Anomalously high entropy change in FeRh alloy. J. Appl. Phys. 79, 1689–1695 (1996).

    Article  CAS  Google Scholar 

  57. Nikitin, S. A. et al. Giant elastocaloric effect in FeRh alloy. Phys. Lett. A 171, 234–236 (1992).

    Article  CAS  Google Scholar 

  58. Dung, N. H. et al. Mixed magnetism for refrigeration and energy conversion. Adv. Energy Mater. 1, 1215–1219 (2011).

    Article  Google Scholar 

  59. Zhang, Q. et al. Magnetocaloric effect and improved relative cooling power in (La0.7Sr0.3MnO3/SrRuO3) superlattices. J. Phys. Condens. Matter 23, 052201 (2011).

    Article  CAS  Google Scholar 

  60. Balli, M., Fruchart, D. & Gignoux, D. Optimization of La(Fe, Co)13− xSix based compounds for magnetic refrigeration. J. Phys. Condens. Matter 19, 236230 (2007).

    Article  CAS  Google Scholar 

  61. Morrison, K. et al. The magnetocaloric performance in pure and mixed magnetic phase CoMnSi. J. Phys. D 43, 195001 (2010).

    Article  CAS  Google Scholar 

  62. Lyubina, J., Hannemann, U., Cohen, L. F. & Ryan, M. P. Novel La(Fe, Si)13/Cu composites for magnetic cooling. Adv. Energy Mater. 2, 1323–1327 (2012).

    Article  CAS  Google Scholar 

  63. Kar-Narayan, S. & Mathur, N. D. Predicted cooling powers for multilayer capacitors based on various electrocaloric and electrode materials. Appl. Phys. Lett. 95, 242903 (2009).

    Article  CAS  Google Scholar 

  64. Lyubina, J., Schäfer, R., Martin, N., Schultz, L. & Gutfleisch, O. Novel design of La(Fe, Si)13 alloys towards high magnetic refrigeration performance. Adv. Mater. 22, 3735–3739 (2010).

    Article  CAS  Google Scholar 

  65. Moore, J. D., Morrison, K., Sandeman, K. G., Katter, M. & Cohen, L. F. Reducing extrinsic hysteresis in first-order La(Fe, Co, Si)13 magnetocaloric systems. Appl. Phys. Lett. 95, 252504 (2009).

    Article  CAS  Google Scholar 

  66. Provenzano, V., Shapiro, A. J. & Shull, R. D. Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature 429, 853–857 (2004).

    Article  CAS  Google Scholar 

  67. Fujita, A., Fujieda, S., Hasegawa, Y. & Fukamichi, K. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1− x)13 compounds and their hydrides. Phys. Rev. B 67, 104416 (2003).

    Article  CAS  Google Scholar 

  68. Pareti, L., Solzi, M., Albertini, F. & Paoluzi, A. Giant entropy change at the co-occurrence of structural and magnetic transitions in the Ni2.19Mn0.81Ga Heusler alloy. Eur. Phys. J. B 32, 303–307 (2003).

    Article  CAS  Google Scholar 

  69. Dalal, N., Klymachyov, A. & Bussmann-Holder, A. Coexistence of order–disorder and displacive features at the phase transitions in hydrogen-bonded solids: squaric acid and its analogs. Phys. Rev. Lett. 81, 5924–5927 (1998).

    Article  CAS  Google Scholar 

  70. Zalar, B., Laguta, V. V. & Blinc, R. NMR evidence for the coexistence of order–disorder and displacive components in barium titanate. Phys. Rev. Lett. 90, 037601 (2003).

    Article  CAS  Google Scholar 

  71. Baumgartner, H. Elektrische Sättigungserscheinungen und elektrokalorischer Effekt von Kaliumphosphat KH2PO4 . Helv. Phys. Acta 23, 651–696 (1950).

    CAS  Google Scholar 

  72. Strukov, B. A. Electrocaloric effect in single-crystal triglycine sulfate. Sov. Phys. Crystallogr. 11, 757–759 (1967).

    Google Scholar 

  73. Kikuchi, A. & Sawaguchi, E. Electrocaloric effect in SrTiO3 . J. Phys. Soc. Jpn 19, 1497–1498 (1964).

    Article  CAS  Google Scholar 

  74. Lombardo, G. & Pohl, R. O. Electrocaloric effect and a new type of impurity mode. Phys. Rev. Lett. 15, 291–293 (1965).

    Article  CAS  Google Scholar 

  75. Shepherd, I. & Feher, G. Cooling by adiabatic depolarization of OH- molecules in KCl. Phys. Rev. Lett. 15, 194–198 (1965).

    Article  CAS  Google Scholar 

  76. Karchevskii, A. I. Electrocaloric effect in polycrystalline barium titanate. Phys. Solid State 3, 2249–2254 (1962).

    Google Scholar 

  77. Sinyavsky, Y. V., Pashkov, N. D., Gorovoy, Y. M., Lugansky, G. E. & Shebanov, L. The optical ferroelectric ceramic as working body for electrocaloric refrigeration. Ferroelectrics 90, 213–217 (1989).

    Article  Google Scholar 

  78. Shebanov, L. & Borman, K. On lead-scandium tantalate solid solutions with high electrocaloric effect. Ferroelectrics 127, 143–148 (1992).

    Article  Google Scholar 

  79. Liu, X. Q., Chen, T. T., Wu, Y. J. & Chen, X. M. Enhanced electrocaloric effects in spark plasma-sintered Ba0.65Sr0.35TiO3-based ceramics at room temperature. J. Am. Ceram. Soc. 96, 1021–1023 (2013).

    Article  CAS  Google Scholar 

  80. Defay, E., Crossley, S., Kar-Narayan, S., Moya, X. & Mathur, N. D. The electrocaloric efficiency of ceramic and polymer films. Adv. Mater. 25, 3337–3342 (2013).

    Article  CAS  Google Scholar 

  81. Rožič, B., Uršič, H., Holc, J., Kosec, M. & Kutnjak, Z. Direct measurements of the electrocaloric effect in substrate-free PMN-0.35PT thick films on a platinum layer. Integr. Ferroelectr. 140, 161–165 (2012).

    Article  CAS  Google Scholar 

  82. Rožič, B. et al. Influence of the critical point on the electrocaloric response of relaxor ferroelectrics. J. Appl. Phys. 110, 064118 (2011).

    Article  CAS  Google Scholar 

  83. Pirc, R., Kutnjak, Z., Blinc, R. & Zhang, Q. M. Upper bounds on the electrocaloric effect in polar solids. Appl. Phys. Lett. 98, 021909 (2011).

    Article  CAS  Google Scholar 

  84. Peräntie, J., Hagberg, J., Uusimäki, A. & Jantunen, H. Electric-field-induced dielectric and temperature changes in a <011>-oriented Pb(Mg1/3Nb2/3)O3 -PbTiO3 single crystal. Phys. Rev. B 82, 134119 (2010).

    Article  CAS  Google Scholar 

  85. Strässle, Th., Furrer, A. & Müller, K. A. Cooling by adiabatic application of pressure: the barocaloric effect. Physica B 276–278, 944–945 (2000).

    Article  Google Scholar 

  86. Xiao, F., Fukuda, T. & Kakeshita, T. Significant elastocaloric effect in a Fe–31.2Pd (at. %) single crystal. Appl. Phys. Lett. 102, 161914 (2013).

    Article  CAS  Google Scholar 

  87. Gorev, M. V., Bogdanov, E. V., Flerov, I. N., Kocharova, A. G. & Laptash, N. M. Investigation of thermal expansion, phase diagrams, and barocaloric effect in the (NH4)2WO2F4 and (NH4)2MoO2F4 oxyfluorides. Phys. Solid State 52, 167–175 (2010).

    Article  CAS  Google Scholar 

  88. Zarnetta, R. et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv. Funct. Mater. 20, 1917–1923 (2010).

    Article  CAS  Google Scholar 

  89. Rodriguez, E. L. & Filisko, F. E. Thermoelastic temperature changes in poly(methyl methacrylate) at high hydrostatic pressure: Experimental. J. Appl. Phys. 53, 6536–6540 (1982).

    Article  Google Scholar 

  90. Sun, Y., Kamarad, J., Arnold, Z., Kou, Z.-Q. & Cheng, Z.-H. Tuning of magnetocaloric effect in a La0.69Ca0.31MnO3 single crystal by pressure. Appl. Phys. Lett. 88, 102505 (2006).

    Article  CAS  Google Scholar 

  91. Albertini, F. et al. Pressure effects on the magnetocaloric properties of Ni-rich and Mn-rich Ni2MnGa alloys. J. Magn. Magn. Mater. 316, 364–367 (2007).

    Article  CAS  Google Scholar 

  92. Lyubina, J., Nenkov, K., Schultz, L. & Gutfleisch, O. Multiple metamagnetic transitions in the magnetic refrigerant La(Fe,Si)13Hx . Phys. Rev. Lett. 101, 177203 (2008).

    Article  CAS  Google Scholar 

  93. Liu, J., Gottschall, T., Skokov, K. P., Moore, J. D. & Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nature Mater. 11, 620–626 (2012).

    Article  CAS  Google Scholar 

  94. Morellon, L. et al. Pressure enhancement of the giant magnetocaloric effect in Tb5Si2Ge2 . Phys. Rev. Lett. 93, 137201 (2004).

    Article  CAS  Google Scholar 

  95. Samara, G. A. Pressure and temperature dependence of the dielectric properties and phase transitions of the ferroelectric perovskites: PbTiO3 and BaTiO3 . Ferroelectrics 2, 277–289 (1971).

    Article  CAS  Google Scholar 

  96. Pertsev, N. A., Zembilgotov, A. G. & Tagantsev, A. K. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 80, 1988–1991 (1998).

    Article  CAS  Google Scholar 

  97. Akcay, G., Alpay, S. P., Rossetti, G. A. Jr & Scott, J. F. Influence of mechanical boundary conditions on the electrocaloric properties of ferroelectric thin films. J. Appl. Phys. 103, 024104 (2008).

    Article  CAS  Google Scholar 

  98. Qiu, J. H. & Jiang, Q. Misfit strain dependence of electrocaloric effect in epitaxial Pb(Zr1− xTix)O3 thin films. J. Appl. Phys. 103, 084105 (2008).

    Article  CAS  Google Scholar 

  99. Liu, Z. K., Li, X. & Zhang, Q. M. Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics. Appl. Phys. Lett. 101, 082904 (2012).

    Article  CAS  Google Scholar 

  100. Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).

    Article  CAS  Google Scholar 

  101. Mosca, D. H., Vidal, F. & Etgens, V. H. Strain engineering of the magnetocaloric effect in MnAs epilayers. Phys. Rev. Lett. 101, 125503 (2008).

    Article  CAS  Google Scholar 

  102. Moya, X. et al. Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. Nature Mater. 12, 52–58 (2013).

    Article  CAS  Google Scholar 

  103. Sattar, M. A., Saidur, R. & Masjuki, H. H. Performance investigation of domestic refrigerator using pure hydrocarbons and blends of hydrocarbons as refrigerants. World Acad. Sci. Eng. Technol. 29, 223–228 (2007).

    Google Scholar 

  104. Wood, M. E. & Potter, W. H. General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity. Cryogenics 25, 667–683 (1985).

    Article  CAS  Google Scholar 

  105. Brown, G. V. & Papell, S. S. Regeneration tests of a room temperature magnetic refrigerator and heat pump. Available at http://arxiv.org/abs/1402.3343 (2014). Unpublished 1978 manuscript now available online.

  106. Richard, M.-A., Rowe, A. M. & Chahine, R. Magnetic refrigeration: Single and multimaterial active magnetic regenerator experiments. J. Appl. Phys. 95, 2146–2150 (2004).

    Article  CAS  Google Scholar 

  107. Mathur, N. & Mischenko, A. Solid state electrocaloric cooling devices and methods. GB patent no. PCT/GB2005/050207 (2005).

  108. Basiulis, A. & Berry, R. L. Solid-state electrocaloric cooling system and method. US patent no. 4,757,688 (1988).

  109. Annaorazov, M. P., Nikitin, S. A., Tyurin, A. L., Akopyan, S. A. & Myndyev, R. W. Heat pump cycles based on the AF–F transition in Fe–Rh alloys induced by tensile stress. Int. J. Refrig. 25, 1034–1042 (2002).

    Article  CAS  Google Scholar 

  110. Quarini, J. & Prince, A. Solid state refrigeration: cooling and refrigeration using crystalline phase changes in metal alloys. Proc. Inst. Mech. Eng. C–J Mech. Eng. Sci. 218, 1175–1179 (2004).

    Article  CAS  Google Scholar 

  111. Yao, G. H., Gong, M. Q. & Wu, J. F. Experimental study on the performance of a room temperature magnetic refrigerator using permanent magnets. Int. J. Refrig. 29, 1267–1273 (2006).

    Article  CAS  Google Scholar 

  112. Zimm, C. et al. Description and performance of a near-room temperature magnetic refrigerator. Adv. Cryog. Eng. 43, 1759–1766 (1998).

    Article  Google Scholar 

  113. Sinyavsky, Yu. & Brodyansky, V. M. Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as working body. Ferroelectrics 131, 321–325 (1992).

    Article  CAS  Google Scholar 

  114. Jia, Y. & Ju, Y. S. A solid-state refrigerator based on the electrocaloric effect. Appl. Phys. Lett. 100, 242901 (2012).

    Article  CAS  Google Scholar 

  115. Gu, H. et al. A chip scale electrocaloric effect based cooling device. Appl. Phys. Lett. 102, 122904 (2013).

    Article  CAS  Google Scholar 

  116. Crossley, S., McGinnigle, J. R., Kar-Narayan, S. & Mathur, N. D. Finite-element optimisation of electrocaloric multilayer capacitors. Appl. Phys. Lett. 104, 082909 (2014).

    Article  CAS  Google Scholar 

  117. Takeuchi, I. et al. Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads. Nature Mater. 2, 180–184 (2003).

    Article  CAS  Google Scholar 

  118. Es'kov, A. V., Karmanenko, S. F., Pakhomov, O. V. & Starkov, A. S. Simulation of a solid-state cooler with electrocaloric elements. Phys. Solid State 51, 1574–1577 (2009).

    Article  CAS  Google Scholar 

  119. Hwalek, J. & Carr, E. F. A liquid crystal 'heat switch'. Heat Transfer Eng. 8, 36–39 (1987).

    Article  CAS  Google Scholar 

  120. Epstein, R. I. & Malloy, K. J. Electrocaloric devices based on thin-film heat switches. J. Appl. Phys. 106, 064509 (2009).

    Article  CAS  Google Scholar 

  121. Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006).

    Article  CAS  Google Scholar 

  122. Kobayashi, W., Teraoka, Y. & Terasaki, I. An oxide thermal rectifier. Appl. Phys. Lett. 95, 171905 (2009).

    Article  CAS  Google Scholar 

  123. Castán, T., Planes, A. & Saxena, A. Thermodynamics of ferrotoroidic materials: Toroidocaloric effect. Phys. Rev. B 85, 144429 (2012).

    Article  CAS  Google Scholar 

  124. Lu, S. G. et al. Thermally mediated multiferroic composites for the magnetoelectric materials. Appl. Phys. Lett. 96, 102902 (2010).

    Article  CAS  Google Scholar 

  125. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  126. Wada, H. & Tanabe, Y. Giant magnetocaloric effect of MnAs1− xSbx . Appl. Phys. Lett. 79, 3302–3304 (2001).

    Article  CAS  Google Scholar 

  127. Tegus, O. Brück, E., Buschow, K. H. J. & de Boer, F. R. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150–152 (2002).

    Article  CAS  Google Scholar 

  128. Trung, N. T., Zhang, L., Caron, L., Buschow, K. H. J. & Brück, E. Giant magnetocaloric effects by tailoring the phase transitions. Appl. Phys. Lett. 96, 172504 (2010).

    Article  CAS  Google Scholar 

  129. Hu, F.-X., Shen, B.-G., Sun, J.-R. & Wu, G.-H. Large magnetic entropy change in a Heusler alloy Ni52.6Mn23.1Ga24.3 single crystal. Phys. Rev. B 64, 132412 (2001).

    Article  CAS  Google Scholar 

  130. Pasquale, M. et al. Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals. Phys. Rev. B 72, 094435 (2005).

    Article  CAS  Google Scholar 

  131. Krenke, T. et al. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nature Mater. 4, 450–454 (2005).

    Article  CAS  Google Scholar 

  132. Khan, M., Ali, N. & Stadler, S. Inverse magnetocaloric effect in ferromagnetic Ni50Mn37+ xSb13− x Heusler alloys. J. Appl. Phys. 101, 053919 (2007).

    Article  CAS  Google Scholar 

  133. Aksoy, S. et al. Tailoring magnetic and magnetocaloric properties of martensitic transitions in ferromagnetic Heusler alloys. Appl. Phys. Lett. 91, 241916 (2007).

    Article  CAS  Google Scholar 

  134. Sandeman, K. G. et al. Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi1− xGex . Phys. Rev. B 74, 224436 (2006).

    Article  CAS  Google Scholar 

  135. Shebanovs, L., Borman, K., Lawless, W. N. & Kalvane, A. Electrocaloric effect in some perovskite ferroelectric ceramics and multilayer capacitors. Ferroelectrics 273, 137–142 (2002).

    Article  CAS  Google Scholar 

  136. Hagberg, J., Uusimäki, A. & Jantunen, H. Electrocaloric characteristics in reactive sintered 0.87 Pb(Mg1/3Nb2/3)O3-0.13 PbTiO3 . Appl. Phys. Lett. 92, 132909 (2008).

    Article  CAS  Google Scholar 

  137. Sebald, G. et al. Electrocaloric and pyroelectric properties of 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 single crystals. J. Appl. Phys. 100, 124112 (2006).

    Article  CAS  Google Scholar 

  138. Olsen, R. B., Butler, W. F., Payne, D. A., Tuttle, B. A. & Held, P. C. Observation of a polarocaloric (electrocaloric) effect of 2 °C in lead zirconate modified with Sn4+ and Ti4+. Phys. Rev. Lett. 45, 1436–1438 (1980).

    Article  CAS  Google Scholar 

  139. Peng, B., Fan, H. & Zhang, Q. A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature. Adv. Funct. Mater. 23, 2987–2992 (2013).

    Article  CAS  Google Scholar 

  140. Chen, H., Ren, T.-L., Wu, X.-M., Yang, Y. & Liu, L.-T. Giant electrocaloric effect in lead-free thin film of strontium bismuth tantalite. Appl. Phys. Lett. 94, 182902 (2009).

    Article  CAS  Google Scholar 

  141. Mischenko, A. S., Zhang, Q., Whatmore, R. W., Scott, J. F. & Mathur, N. D. Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9 PbMg1/3Nb2/3O3-0.1 PbTiO3 near room temperature. Appl. Phys. Lett. 89, 242912 (2006).

    Article  CAS  Google Scholar 

  142. Correia, T. M. et al. Investigation of the electrocaloric effect in a PbMg1/3Nb2/3O3-PbTiO3 relaxor thin film. Appl. Phys. Lett. 95, 182904 (2009).

    Article  CAS  Google Scholar 

  143. Saranya, D., Chaudhuri, A. R., Parui, J. & Krupanidhi, S. B. Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary. Bull. Mater. Sci. 32, 259–262 (2009).

    Article  CAS  Google Scholar 

  144. Liu, P. F. et al. Huge electrocaloric effect in Langmuir–Blodgett ferroelectric polymer thin films. New J. Phys. 12, 023035 (2010).

    Article  CAS  Google Scholar 

  145. Li, X. et al. Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Appl. Phys. Lett. 101, 132903 (2012).

    Article  CAS  Google Scholar 

  146. Nikitin, S. A., Skokov, K. P., Koshkid'ko, Yu. S., Pastushenkov, Yu. G. & Ivanova, T. I. Giant rotating magnetocaloric effect in the region of spin-reorientation transition in the NdCo5 single crystal. Phys. Rev. Lett. 105, 137205 (2010).

    Article  CAS  Google Scholar 

  147. Caron, L. et al. On the determination of the magnetic entropy change in materials with first-order transitions. J. Magn. Magn. Mater. 321, 3559–3566 (2009).

    Article  CAS  Google Scholar 

  148. Crossley, S. Electrocaloric Materials and Devices PhD thesis, Univ. Cambridge (2013); www.repository.cam.ac.uk/handle/1810/245063

    Google Scholar 

  149. Moore, J. D., Skokov, K. P., Liu, J. & Gutfleisch, O. Procedure for numerical integration of the magnetocaloric effect. J. Appl. Phys. 112, 063920 (2012).

    Article  CAS  Google Scholar 

  150. Bai, Y., Ding, K., Zheng, G.-P., Shi, S.-Q. & Qiao, L. Entropy-change measurement of electrocaloric effect of BaTiO3 single crystal. Phys. Status Solidi A 209, 941–944 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For information about refrigerator performance, we thank I. Wood (Adande Refrigeration), and M. Tomlin and P. Roberts (Sharp Laboratories of Europe). For discussions, we thank M. Bibes, G. V. Brown, S. Crossley, E. Defay, S. Fähler, Z. Kutnjak, Ll. Mañosa, A. Planes, N. Pryds, J. F. Scott, V. Shvartsman and K. Uchino. X.M. is grateful for support from the Herchel Smith Fund, the Spanish MEC Ramón y Cajal programme, and the Royal Society. S.K.N. is grateful for support from the Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Mathur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moya, X., Kar-Narayan, S. & Mathur, N. Caloric materials near ferroic phase transitions. Nature Mater 13, 439–450 (2014). https://doi.org/10.1038/nmat3951

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3951

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing