Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Topological surface state in the Kondo insulator samarium hexaboride

Abstract

Topological invariants of electron wavefunctions in condensed matter reveal many intriguing phenomena1,2. A notable example is provided by topological insulators, which are characterized by an insulating bulk coexisting with a metallic boundary state3,4. Although there has been intense interest in Bi-based topological insulators5,6, their behaviour is complicated by the presence of a considerable residual bulk conductivity7,8,9,10. Theories predict11,12 that the Kondo insulator system SmB6, which is known to undergo a transition from a Kondo lattice metal to a small-gap insulator state with decreasing temperature, could be a topological insulator. Although the insulating bulk and metallic surface separation has been demonstrated in recent transport measurements13,14,15, these have not demonstrated the topologically protected nature of the metallic surface state. Here we report thickness-dependent transport measurements on doped SmB6, and show that magnetic and non-magnetic doping results in contrasting behaviour that supports the conclusion that SmB6 shows virtually no residual bulk conductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Failure of Ohm’s law.
Figure 2: Topological surface state protected by TRS.
Figure 3: Behaviour of magnetic impurities in SmB6.
Figure 4: Quantum percolation of high concentration Yb doped SmB6.

Similar content being viewed by others

References

  1. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  CAS  Google Scholar 

  2. Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  CAS  Google Scholar 

  3. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    Article  CAS  Google Scholar 

  4. Ando, Yoichi Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

    Article  Google Scholar 

  5. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  6. Qi, X-L. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  CAS  Google Scholar 

  7. Hsieh, D. et al. A topological Dirac insulator in a quantum spin hall phase. Nature 452, 970–974 (2008).

    Article  CAS  Google Scholar 

  8. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys. 5, 438–442 (2009).

    Article  CAS  Google Scholar 

  9. Zhang, T. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett. 103, 266803 (2009).

    Article  Google Scholar 

  10. Okada, Y. et al. Direct observation of broken time reversal symmetry on the surface of a magnetically doped topological insulator. Phys. Rev. Lett. 106, 206805 (2011).

    Article  Google Scholar 

  11. Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

    Article  Google Scholar 

  12. Lu, F., Zhao, J., Weng, H., Fang, Z. & Dai, X. Correlated topological insulators with mixed valence. Phys. Rev. Lett. 110, 096401 (2013).

    Article  Google Scholar 

  13. Kim, D. J., Grant, T. & Fisk, Z. Limit cycle and anomalous capacitance in the Kondo insulator SmB6 . Phys. Rev. Lett. 109, 096601 (2012).

    Article  CAS  Google Scholar 

  14. Wolgast, S. et al. Low temperature surface conduction in the Kondo insulator SmB6 . Phys. Rev. B 88, 180405(R) (2013).

    Article  Google Scholar 

  15. Kim, D. J. et al. Surface hall effect and nonlocal transport in SmB6 . Sci. Rep. 3, 3150 (2013).

    Article  CAS  Google Scholar 

  16. Aeppli, G. & Fisk, Z. Kondo insulators. Comments Condens. Matter Phys. 16, 155–165 (1992).

    CAS  Google Scholar 

  17. Fisk, Z. & Ott, H. R. Superconductivity in New Materials Vol. 4 (Elsevier, (2010).

    Google Scholar 

  18. Mydosh, J. A. & Oppeneer, P. M. Superconductivity and magnetism-unsolved case of URu2Si2 . Rev. Mod. Phys. 83, 1301–1322 (2011).

    Article  CAS  Google Scholar 

  19. Coleman, P. & Schofield, A. J. Quantum criticality. Nature 433, 226–229 (2005).

    Article  CAS  Google Scholar 

  20. Ozcomert, J. S. & Trenary, M. Atomically resolved surface structure of LaB6(100). Surf. Sci. 265, L227 (1992).

    Article  CAS  Google Scholar 

  21. Kim, D. J. & Fisk, Z. A labview based template for user created experiment automation. Rev. Sci. Instrum. 83, 123705 (2012).

    Article  CAS  Google Scholar 

  22. Balicas, L. et al. Magnetic field-tuned quantum critical point in CeAuSb2 . Phys. Rev. B 72, 064422 (2005).

    Article  Google Scholar 

  23. von Klitzing, K. & Landwehr, G. Surface quantum states in tellurium. Solid State Commun. 9, 2201–2205 (1971).

    Article  CAS  Google Scholar 

  24. Cooley, J. C. et al. High field gap closure in the Kondo insulator SmB6 . J. Supercond. 12, 171–173 (1999).

    Article  CAS  Google Scholar 

  25. Zhu, Z-H. et al. Polarity-driven surface metallicity in SmB6 . Phys. Rev. Lett. 111, 216402 (2013).

    Article  Google Scholar 

  26. Yeo, S., Song, K., Hur, N., Fisk, Z. & Schlottmann, P. Effects of Eu doping on SmB6 single crystals. Phys. Rev. B 85., 115125 (2012).

    Article  Google Scholar 

  27. Hongming, W., Jianzhou, Z., Wang, Z., Fang, Z. & Dai, X. Topological crystalline Kondo insulator in mixed valence ytterbium borides. Phys. Rev. Lett. 112, 016403 (2014).

    Article  Google Scholar 

  28. Chu, R-L., Lu, J. & Shen, S-Q. Quantum percolation in quantum spin Hall antidote systems. Europhys. Lett. 100, 17013 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Dzero, I. Krivorotov and S. Thomas for discussions. This research was supported by NSF-DMR-0801253, UC Irvine CORCL grant MIIG-2011-12-8 and Sloan Research Fellowship BR2013-116, J.X.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the idea of the experiment together, D.J.K. and Z.F. grew crystals and D.J.K. made the measurements. All authors discussed the results, participated in data analysis and wrote the manuscript.

Corresponding author

Correspondence to D. J. Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D., Xia, J. & Fisk, Z. Topological surface state in the Kondo insulator samarium hexaboride. Nature Mater 13, 466–470 (2014). https://doi.org/10.1038/nmat3913

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3913

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing