Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour

Abstract

Hierarchical composite materials design in biological exoskeletons achieves penetration resistance through a variety of energy-dissipating mechanisms while simultaneously balancing the need for damage localization to avoid compromising the mechanical integrity of the entire structure and to maintain multi-hit capability. Here, we show that the shell of the bivalve Placuna placenta (~99 wt% calcite), which possesses the unique optical property of ~80% total transmission of visible light, simultaneously achieves penetration resistance and deformation localization via increasing energy dissipation density (0.290 ± 0.072 nJ μm−3) by approximately an order of magnitude relative to single-crystal geological calcite (0.034 ± 0.013 nJ μm−3). P. placenta, which is composed of a layered assembly of elongated diamond-shaped calcite crystals, undergoes pervasive nanoscale deformation twinning (width ~50 nm) surrounding the penetration zone, which catalyses a series of additional inelastic energy dissipating mechanisms such as interfacial and intracrystalline nanocracking, viscoplastic stretching of interfacial organic material, and nanograin formation and reorientation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microstructural/crystallographic features and mechanical behaviour of biogenic calcite in Placuna placenta in comparison to single-crystal geological calcite.
Figure 2: Nanoscale deformation twinning in P. placenta.
Figure 3: Nanoscopic inelastic deformation in individual calcitic layers of P. placenta.
Figure 4: Nanoscale deformation mechanisms in P. placenta and single-crystal calcite under indentation.

Similar content being viewed by others

References

  1. Kamat, S., Su, X., Ballarini, R. & Heuer, A. H. Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405, 1036–1040 (2000).

    Article  CAS  Google Scholar 

  2. Kamat, S., Kessler, H., Ballarini, R., Nassirou, M. & Heuer, A. H. Fracture mechanisms of the Strombus gigas conch shell: II-micromechanics analyses of multiple cracking and large-scale crack bridging. Acta Mater. 52, 2395–2406 (2004).

    Article  CAS  Google Scholar 

  3. Aizenberg, J. et al. Skeleton of Euplectella sp: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005).

    Article  CAS  Google Scholar 

  4. Weaver, J. C. et al. The stomatopod dactyl club: A formidable damage-tolerant biological hammer. Science 336, 1275–1280 (2012).

    Article  CAS  Google Scholar 

  5. Ortiz, C. & Boyce, M. C. Biological structural materials. Science 319, 1053–1054 ( 2008).

    Article  CAS  Google Scholar 

  6. Dunlop, J. W. C. & Fratzl, P. Biological composites. Annu. Re. Mater. Res. 40, 10.1–10.24 (2010).

    Article  Google Scholar 

  7. Yang, W. et al. Nature flexible dermal armor. Adv. Mater. 25, 31–48 (2013).

    Article  Google Scholar 

  8. Gao, H., Ji, B., Jäger, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).

    Article  CAS  Google Scholar 

  9. Huang, Z. et al. Uncovering high-strain rate protection mechanism in nacre. Sci. Rep. 1, 148 (2011).

    Article  CAS  Google Scholar 

  10. Bruet, B. J. F., Song, J., Boyce, M. C. & Ortiz, C. Materials design principles of ancient fish armour. Nature Mater. 7, 748–756 (2008).

    Article  CAS  Google Scholar 

  11. Barthelat, F., Tang, H., Zavattieri, P. D., Li, C-M. & Espinosa, H. D. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306–337 (2007).

    Article  CAS  Google Scholar 

  12. Tai, K., Dao, M., Suresh, S., Palazoglu, A. & Ortiz, C. Nanoscale heterogeneity promotes energy dissipation in bone. Nature Mater. 6, 454–462 (2007).

    Article  CAS  Google Scholar 

  13. Sands, J. M., Patel, P. J., Dehmer, P. G., Hsieh, A. J. & Boyce, M. C. Transparent armour materials. Military Tech. 12, 82–91 (2008).

    Google Scholar 

  14. Li, L. & Ortiz, C. Biological design for simultaneous optical transparency and mechanical robustness in the shell of Placuna placenta. Adv. Mater. 25, 2344–2350 (2013).

    Article  CAS  Google Scholar 

  15. Checa, A. G., Esteban-Delgado, F. J. & Rodríguez-Navarro, A. B. Crystallographic structure of the foliated calcite of bivalves. J. Struct. Biol. 157, 393–402 (2007).

    Article  CAS  Google Scholar 

  16. Arciszewski, T. & Cornell, J. in Intelligent Computing in Engineering and Architecture (ed Smith, I.) 32–53 (Springer, (2006).

    Book  Google Scholar 

  17. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  18. Song, J., Ortiz, C. & Boyce, M. C. Threat-protection mechanics of an armored fish. J. Mech. Behav. Biomed. Mater. 4, 699–712 (2011).

    Article  Google Scholar 

  19. Kunitake, M. E., Mangano, L. M., Peloquin, J. M., Baker, S. P. & Estroff, L. A. Evaluation of strengthening mechanisms in calcite single crystals from mollusk shells. Acta Biomater. 9, 5353–5359 (2013).

    Article  CAS  Google Scholar 

  20. Bruet, B. J. F. et al. Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 7, 2400–2419 (2005).

    Article  Google Scholar 

  21. He, L. H. & Swain, M. V. Energy absorption characterization of human enamel using nanoindentation. J. Biomed. Mater. Res. A 81, 484–492 (2007).

    Article  Google Scholar 

  22. Turner, F. J., Griggs, D. T. & Heard, H. Experimental deformation of calcite crystals. Bull. Geo. Soc. Amer. 65, 883–934 (1954).

    Article  CAS  Google Scholar 

  23. Barber, D. J. & Wenk, H. R. Deformation twinning in calcite, dolomite, and other rhombohedral carbonates. Phys. Chem. Minerals 5, 141–165 (1979).

    Article  CAS  Google Scholar 

  24. Chen, M. et al. Deformation twinning in nanocrystalline aluminum. Science 300, 1275–1277 (2003).

    Article  CAS  Google Scholar 

  25. Li, X., Xu, Z-H. & Wang, R. In-situ observation of nanograin rotation and deformation in nacre. Nano Lett. 6, 2301–2304 (2006).

    Article  CAS  Google Scholar 

  26. Oyen, M. L. & Cook, R. F. A practical guide for analysis of nanoindentation data. J. Mech. Behav. Biomed. Mater. 2, 396–407 (2009).

    Article  Google Scholar 

  27. Yu, Q. et al. Strong crystal size effect on deformation twinning. Nature 463, 335–338 (2010).

    Article  CAS  Google Scholar 

  28. Zhu, Y. T., Liao, X. Z. & Wu, X. L. Deformation twinning in nanocrystalline materials. Prog. in Mater. Sci. 57, 1–62 (2012).

    Article  CAS  Google Scholar 

  29. Zlufarska, I., Nakano, A. & Vashishta, P. A crossover in the mechanical response of nanocrystalline ceramics. Science 309, 911–914 (2005).

    Article  Google Scholar 

  30. Li, Y. S., Tao, N. R. & Lu, K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 56, 230–241 (2008).

    Article  CAS  Google Scholar 

  31. Lu, K., Lu, L. & Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009).

    Article  CAS  Google Scholar 

  32. Smith, B. L. et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999).

    Article  CAS  Google Scholar 

  33. Goetz, A. J. et al. Interdigitating biocalcite dendrites form a 3-D jigsaw structure in brachiopod shells. Acta Biomater. 7, 2237–2243 (2011).

    Article  CAS  Google Scholar 

  34. O’Neill, P. L. Polycrystalline echinoderm calcite and its fracture mechanics. Science 213, 646–648 (1981).

    Article  Google Scholar 

  35. Wang, R. Z., Addadi, L. & Weiner, S. Design strategies of sea urchin teeth: Structure, composition and micromechanical relations to function. Phil. Trans. R. Soc. Lond. B 352, 469–480 (1997).

    Article  CAS  Google Scholar 

  36. Suzuki, M., Kim, H., Mukai, H., Nagasawa, H. & Kogure, T. Quantitative XRD analysis of {110} twin density in biotic aragonites. J. Struct. Biol. 180, 458–468 (2012).

    Article  CAS  Google Scholar 

  37. Younis, S., Kauffmann, Y., Pokroy, B. & Zolotoyabko, E. Atomic structure and ultrastructure of the Murex troscheli shell. J. Struct. Biol. 180, 539–545 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the National Science Foundation through the MIT Center for Materials Science and Engineering (DMR-0819762), the US Army Research Office through the MIT Institute for Soldier Nanotechnologies (Contract W911NF-07-D-0004), the National Security Science and Engineering Faculty Fellowship Program (N00244-09-1-0064), and the Office of Assistant Secretary of Defense for Research and Engineering. The authors would like to thank J. Li, Y. Zhu, M. Dao and A. Schwartzman for fruitful general discussions of the manuscript. The authors would like to thank J. C. Weaver for his assistance in scanning electron microscopy imaging. The authors would also like to thank L. Han, A. Schwartzman, S. Chen, Y. Zhang and M. J. Connors for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

L.L. and C.O. designed the research, analysed the data and wrote the manuscript. L.L. conducted the experiments

Corresponding author

Correspondence to Christine Ortiz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 932 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Ortiz, C. Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour. Nature Mater 13, 501–507 (2014). https://doi.org/10.1038/nmat3920

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3920

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing