Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices

Abstract

Elementary particles such as electrons1,2 or photons3,4 are frequent subjects of wave-nature-driven investigations, unlike collective excitations such as phonons. The demonstration of wave–particle crossover, in terms of macroscopic properties, is crucial to the understanding and application of the wave behaviour of matter. We present an unambiguous demonstration of the theoretically predicted crossover from diffuse (particle-like) to specular (wave-like) phonon scattering in epitaxial oxide superlattices, manifested by a minimum in lattice thermal conductivity as a function of interface density. We do so by synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the interface density, with unit-cell precision, using two different epitaxial-growth techniques. These observations open up opportunities for studies on the wave nature of phonons, particularly phonon interference effects, using oxide superlattices as model systems, with extensive applications in thermoelectrics and thermal management.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measured thermal conductivity values for superlattices as a function of interface density at room temperature.
Figure 2: Measured thermal conductivity values for (STO)m/(CTO)n superlattices as a function of interface density at different temperatures.
Figure 3: Structural and microstructural characterization of superlattice samples from both series.

References

  1. Venema, L. C. et al. Imaging electron wave functions of quantized energy levels in carbon nanotubes. Science 283, 52–55 (1999).

    Article  CAS  Google Scholar 

  2. Liang, W. et al. Fabry–Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).

    Article  CAS  Google Scholar 

  3. Heavens, O. S. & Ditchburn, R. W. Insight Into Optics (Wiley, 1992).

    Book  Google Scholar 

  4. Born, M. & Wolf, E. Principles of Optics (CUP, 1999).

    Book  Google Scholar 

  5. Trigo, M., Bruchhausen, A., Fainstein, A., Jusserand, B. & Thierry-Mieg, V. Confinement of acoustical vibrations in a semiconductor planar phonon cavity. Phys. Rev. Lett. 89, 227402 (2002).

    Article  CAS  Google Scholar 

  6. Narayanamurti, V., Stormer, H. L., Chin, M. A., Gossard, A. C. & Wiegmann, W. Selective transmission of high-frequency phonons by a superlattice: The ‘dielectric’ phonon filter. Phys. Rev. Lett. 43, 2012–2016 (1979).

    Article  CAS  Google Scholar 

  7. Luckyanova, M. N. et al. Coherent phonon heat conduction in superlattices. Science 338, 936–939 (2012).

    Article  CAS  Google Scholar 

  8. Siemens, M. E. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nature Mater. 8, 1–5 (2009).

    Article  Google Scholar 

  9. Cheaito, R. et al. Experimental investigation of size effects on the thermal conductivity of silicon–germanium alloy thin films. Phys. Rev. Lett. 109, 195901 (2012).

    Article  Google Scholar 

  10. Capinski, W. S. & Maris, H. J. Thermal conductivity of GaAs/AlAs superlattices. Physica B 219–220, 699–701 (1996).

    Article  Google Scholar 

  11. Venkatasubramanian, R. Lattice thermal conductivity reduction and phonon localization-like behavior in superlattice structures. Phys. Rev. B 61, 3091–3097 (2000).

    Article  CAS  Google Scholar 

  12. Lee, S. M., Cahill, D. G. & Venkatasubramanian, R. Thermal conductivity of Si–Ge superlattices. Appl. Phys. Lett. 70, 2957–2959 (1997).

    Article  CAS  Google Scholar 

  13. Touzelbaev, M. N., Zhou, P., Venkatasubramanian, R. & Goodson, K. E. Thermal characterization of Bi2Te3/Sb2Te3 superlattices. J. Appl. Phys. 90, 763–766.

  14. Rawat, V., Koh, Y. & Cahill, D. Thermal conductivity of (Zr,W)N/ScN metal/semiconductor multilayers and superlattices. J. Appl. Phys. 105, 024909 (2009).

    Article  Google Scholar 

  15. Koh, Y. K., Cao, Y., Cahill, D. G. & Jena, D. Heat-transport mechanisms in superlattices. Adv. Funct. Mater. 19, 610–615 (2009).

    Article  CAS  Google Scholar 

  16. Chakraborty, S. et al. Thermal conductivity in strain symmetrized Si/Ge superlattices on Si(111). Appl. Phys. Lett. 83, 4184–4186 (2003).

    Article  CAS  Google Scholar 

  17. Huxtable, S. T. et al. Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices. Appl. Phys. Lett. 80, 1737–1739 (2002).

    Article  CAS  Google Scholar 

  18. Simkin, M. & Mahan, G. Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84, 927–930 (2000).

    Article  CAS  Google Scholar 

  19. Chen, Y., Li, D., Lukes, J. & Ni, Z. Minimum superlattice thermal conductivity from molecular dynamics. Phys. Rev. B 72, 174302 (2005).

    Article  Google Scholar 

  20. Termentzidis, K., Chantrenne, P., Duquesne, J-Y. & Saci, A. Thermal conductivity of GaAs/AlAs superlattices and the puzzle of interfaces. J. Phys. Condens. Matter 22, 475001 (2010).

    Article  Google Scholar 

  21. Garg, J., Bonini, N. & Marzari, N. High thermal conductivity in short-period superlattices. Nano Lett. 11, 5135–5141 (2011).

    Article  CAS  Google Scholar 

  22. Chernatynskiy, A., Grimes, R. W., Zurbuchen, M. A., Clarke, D. R. & Phillpot, S. R. Crossover in thermal transport properties of natural, perovskite-structured superlattices. Appl. Phys. Lett. 95, 161906 (2009).

    Article  Google Scholar 

  23. Chen, G. Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures. J. Heat Transf. 119, 220–229 (1997).

    Article  CAS  Google Scholar 

  24. Capinski, W. S. et al. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B 59, 8105–8113 (1999).

    Article  CAS  Google Scholar 

  25. Oh, D-W. et al. Thermal conductivity as a metric for the crystalline quality of SrTiO3 epitaxial layers. Appl. Phys. Lett. 98, 221904 (2011).

    Article  Google Scholar 

  26. Glassbrenner, C. & Slack, G. Thermal conductivity of silicon and germanium from 3° K to the melting point. Phys. Rev. 134, A1058–A1069 (1964).

    Article  Google Scholar 

  27. Carlson, R. O., Slack, G. A. & Silverman, S. J. Thermal conductivity of GaAs and GaAs1−xPx laser semiconductors. J. Appl. Phys. 36, 505–507 (1965).

    Article  CAS  Google Scholar 

  28. Uecker, R. et al. Properties of rare-earth scandate single crystals (Re = Nd–Dy). J. Cryst. Growth 310, 2649–2658 (2008).

    Article  CAS  Google Scholar 

  29. Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H. Y. Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002).

    Article  CAS  Google Scholar 

  30. Jiang, J. C., Pan, X. Q., Tian, W., Theis, C. D. & Schlom, D. G. Abrupt PbTiO3/SrTiO3 superlattices grown by reactive molecular beam epitaxy. Appl. Phys. Lett. 74, 2851–2853 (1999).

    Article  CAS  Google Scholar 

  31. Kawasaki, M. et al. Atomic control of the SrTiO3 crystal surface. Science 266, 1540–1542 (1994).

    Article  CAS  Google Scholar 

  32. Schlom, D. G., Chen, L. Q., Pan, X., Schmehl, A. & Zurbuchen, M. A. A thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 91, 2429–2454 (2008).

    Article  CAS  Google Scholar 

  33. Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work on SrTiO3/CaTiO3 superlattices was supported by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-05CH11231. The work on SrTiO3/BaTiO3 superlattices by A.S., C-H.L., D.G.S. and M.A.Z. was supported by the Defense Advanced Research Projects Agency (DARPA) and the US Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) through Grant No. W31P4Q-09-1-0005. TEM sample preparation for some of the SrTiO3/BaTiO3 superlattices was performed by the UCLA Nanoelectronics Research Facility. We acknowledge the use of instruments at the Electron Imaging Center for NanoMachines (EICN) supported by NIH (1S10RR23057 to Z.H.Z.) at the California NanoSystems Institute (CNSI), UCLA. Electron microscopy and spectroscopy of SrTiO3/BaTiO3 at Cornell by Y.Z. and D.A.M. was supported by the Army Research Office (ARO) grant W911NF-09-1-0415 and the electron microscopy facility of the Cornell Center for Materials Research (CCMR) by the National Science Foundation Materials Research Science and Engineering Centers (MRSEC) programme (DMR 1120296). P.E.H. is grateful for financial support from Army Research office (ARO) grant W911NF-13-1-0378. TDTR measurements on the SrTiO3/CaTiO3 superlattices at the University of Virginia were supported by the National Science Foundation (NSF) grant CBET-1339436. J.R. acknowledges the fellowship from Link Foundation. The authors wish to express deep gratitude to D. G. Cahill for measuring the thermal conductivity of a significant number of the samples by TDTR, and for many thoughtful discussions. The authors also wish to acknowledge the contributions of CrysTec GmbH for providing the high-quality single-crystal substrates that were used in this study.

Author information

Authors and Affiliations

Authors

Contributions

J.R. and P.E.H. designed the experiments on STO/CTO superlattices and M.A.Z. designed the experiments on STO/BTO superlattices. A.K.Y., P.B.R., J.R. and A.S. grew and characterized the samples for STO/CTO superlattice work, and A.S. and C-H.L. grew the samples for STO/BTO superlattice work. R.C., J.C.D., B.M.F. and P.E.H. measured and analysed the thermal conductivity of samples. S.J.S., M.A.Z., Y.Z. and D.A.M. performed TEM studies. A.W.L. assisted in TDTR experiments at UVa. J.E.M. performed the Simkin–Mahan model calculations and J.R. carried out the coherence length calculations and scaling analysis to modify the Simkin–Mahan model. J.R., P.E.H., M.A.Z., A.K.Y. and R.C. co-wrote the manuscript. R.R., A.M., D.G.S. and M.A.Z. supervised the research. All authors contributed to the discussions and manuscript preparation.

Corresponding authors

Correspondence to Ramamoorthy Ramesh or Mark A. Zurbuchen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3701 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravichandran, J., Yadav, A., Cheaito, R. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nature Mater 13, 168–172 (2014). https://doi.org/10.1038/nmat3826

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3826

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing