Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhancing multiphoton upconversion through energy clustering at sublattice level

Abstract

The applications of lanthanide-doped upconversionnanocrystals in biological imaging, photonics, photovoltaics and therapeutics have fuelled a growing demand for rational control over the emission profiles of the nanocrystals1,2,3,4,5,6,7,8,9,10,11,12,13,14. A common strategy for tuning upconversion luminescence is to control the doping concentration of lanthanide ions15,16. However, the phenomenon of concentration quenching of the excited state at high doping levels poses a significant constraint. Thus, the lanthanide ions have to be stringently kept at relatively low concentrations to minimize luminescence quenching17. Here we describe a new class of upconversion nanocrystals adopting an orthorhombic crystallographic structure in which the lanthanide ions are distributed in arrays of tetrad clusters. Importantly, this unique arrangement enables the preservation of excitation energy within the sublattice domain and effectively minimizes the migration of excitation energy to defects, even in stoichiometric compounds with a high Yb3+ content (calculated as 98 mol%). This allows us to generate an unusual four-photon-promoted violet upconversion emission from Er3+ with an intensity that is more than eight times higher than previously reported. Our results highlight that the approach to enhancing upconversion through energy clustering at the sublattice level may provide new opportunities for light-triggered biological reactions and photodynamic therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation showing the topological energy migration pathways in different types of crystal sublattice.
Figure 2: Structural characterization of the as-synthesized KYb2F7:Er (2 mol%) nanocrystals.
Figure 3: Optical characterization of the as-synthesized KYb2F7:Er nanocrystals.
Figure 4: Enzyme activity screening using the KYb2F7:Er (2 mol%) nanocrystals.

Similar content being viewed by others

References

  1. Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011).

    Article  CAS  Google Scholar 

  2. Zou, W., Visser, C., Maduro, J. A., Pshenichnikov, M. S. & Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nature Photon. 6, 560–564 (2012).

    Article  CAS  Google Scholar 

  3. Zhang, F. et al. Direct imaging the upconversion nanocrystal core/shell structure at the sub-nanometre level: Shell thickness dependence in upconverting optical properties. Nano. Lett. 12, 2852–2858 (2012).

    Article  CAS  Google Scholar 

  4. Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).

    Article  CAS  Google Scholar 

  5. Park, Y. I. et al. Comparative study of upconverting nanoparticles with various crystal structures, core/shell structures, and surface characteristics. J. Phys. Chem. C 117, 2239–2244 (2013).

    Article  CAS  Google Scholar 

  6. Zhao, J. et al. Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: Role of nanocrystal size. Nanoscale 5, 944–952 (2013).

    Article  CAS  Google Scholar 

  7. Hao, J., Zhang, Y. & Wei, X. Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films. Angew. Chem. Int. Ed. 50, 6876–6880 (2011).

    Article  CAS  Google Scholar 

  8. Wang, F. et al. Tuning upconversion through energy migration in core–shell nanoparticles. Nature Mater. 10, 968–973 (2011).

    Article  CAS  Google Scholar 

  9. Kolesov, R. et al. Optical detection of a single rare-earth ion in a crystal. Nature Commun. 3, 1029 (2012).

    Article  CAS  Google Scholar 

  10. Liu, Y. et al. Amine-functionalized lanthanide-doped zirconia nanoparticles: Optical spectroscopy, time-resolved FRET biodetection and targeted imaging. J. Am. Chem. Soc. 134, 15083–15090 (2012).

    Article  CAS  Google Scholar 

  11. Chen, D., Lei, L., Yang, A., Wang, Z. & Wang, Y. Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals. Chem. Commun. 48, 5898–5900 (2012).

    Article  CAS  Google Scholar 

  12. Ye, X. et al. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc. Natl Acad. Sci. USA 107, 22430–22435 (2010).

    Article  CAS  Google Scholar 

  13. Chen, G., Ohulchanskyy, T. Y., Kumar, R., Agren, H. & Prasad, P. N. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 4, 3163–3168 (2010).

    Article  CAS  Google Scholar 

  14. Gorris, H. H. & Wolfbeis, O. S. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem. Int. Ed. 52, 3584–3600 (2013).

    Article  CAS  Google Scholar 

  15. Chan, E. M. et al. Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission. Nano Lett. 12, 3839–3845 (2012).

    Article  CAS  Google Scholar 

  16. Wang, F. & Liu, X. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2009).

    Article  Google Scholar 

  17. Vetrone, F., Boyer, J-C., Capobianco, J. A., Speghini, A. & Bettinelli, M. Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals. J. Appl. Phys. 96, 661–667 (2004).

    Article  CAS  Google Scholar 

  18. Krämer, K. W., Biner, D., Frei, G., Güdel, H. U., Hehlen, M. P. & Lüthi, S. R. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 16, 1244–1251 (2004).

    Article  Google Scholar 

  19. Mai, H., Zhang, Y., Si, R., Yan, Z., Sun, L., You, L. & Yan, C. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 128, 6426–6436 (2006).

    Article  CAS  Google Scholar 

  20. Wang, G., Peng, Q. & Li, Y. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 131, 14200–14201 (2009).

    Article  CAS  Google Scholar 

  21. Berdowski, P. & Blasse, G. Luminescence and energy migration in a two-dimensional system–NaEuTiO4 . J. Lumin. 29, 243–260 (1984).

    Article  CAS  Google Scholar 

  22. Buijs, M. & Blasse, G. Luminescence and energy migration in a one-dimensional system–EuMgB5O10 . J. Lumin. 34, 263–278 (1986).

    Article  CAS  Google Scholar 

  23. Danielson, E. et al. A rare-earth phosphor containing one-dimensional chains identified through combinatorial methods. Science 279, 837–839 (1998).

    Article  CAS  Google Scholar 

  24. Ananias, D. et al. Molecule-like Eu3+-dimers embedded in an extended system exhibit unique photoluminescence properties. J. Am. Chem. Soc. 131, 8620–8626 (2009).

    Article  CAS  Google Scholar 

  25. Waber, J. T. & Cromer, D. T. Orbital radii of atoms and ions. J. Chem. Phys. 42, 4116–4123 (1965).

    Article  CAS  Google Scholar 

  26. Malta, O. L. Mechanisms of non-radiative energy transfer involving lanthanide ions revisited. J. Non-Cryst. Solids. 354, 4770–4776 (2008).

    Article  CAS  Google Scholar 

  27. Debasu, M. L., Ananias, D., Rocha, J., Malta, O. L. & Carlos, L. D. Energy-transfer from Gd(III) to Tb(III) in (Gd,Yb,Tb)PO4 nanocrystals. Phys. Chem. Chem. Phys. 15, 15565–15571 (2013).

    Article  CAS  Google Scholar 

  28. Coleman, J. E. Structure and mechanism of alkaline phosphatase. Annu. Rev. Biophys. Biomol. Struct. 21, 441–483 (1992).

    Article  CAS  Google Scholar 

  29. Kamiya, M., Urano, Y., Ebata, N., Yamamoto, M., Kosuge, J. & Nagano, T. Extension of the applicable range of fluorescein: A fluorescein-based probe for western blot analysis. Angew. Chem. Int. Ed. 44, 5439–5441 (2005).

    Article  CAS  Google Scholar 

  30. Jia, L., Xu, J., Li, D., Pang, S., Fang, Y., Song, Z. & Ji, J. Fluorescence detection of alkaline phosphatase activity with β-cyclodextrin-modified quantum dots. Chem. Commun. 46, 7166–7168 (2010).

    Article  CAS  Google Scholar 

  31. Zhou, J., Liu, Z. & Li, F. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 41, 1323–1349 (2012).

    Article  CAS  Google Scholar 

  32. Wang, J. et al. Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning. C. R. Chim. 13, 731–736 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The bulk of the work was supported by the Institute of Materials Research and Engineering (IMRE/12-8C0101) and the Singapore Ministry of Education (MOE2010-T2-1-083). Y.H. is grateful to KAUST Global Collaborative Research for the Academic Excellence Alliance (AEA) fund and P.Z. acknowledges the financial support from NSERC Canada. The PNC/XSD facilities at the Advanced Photon Source are supported by the US Department of Energy (DOE)-Basic Energy Sciences, a Major Resources Support grant from NSERC, the University of Washington, the Canadian Light Source, and the Advanced Photon Source. Use of the Advanced Photon Source was supported by the US DOE under contract no. DE-AC02-06CH11357. We thank PNC/XSD staff beamline scientist R. Gordon for synchrotron technical support. The authors thank H. Zhu, S. Animesh and R. Chen for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

J.W., R.D. and X.L. conceived the project, performed the nanocrystal synthesis, and wrote the paper. M.A.M. and P.Z. performed the synchrotron experiments. Y.H. contributed to the high-resolution TEM imaging and analysis. B.C., J.Y., F.W., D.C., T.S.A.H. and G.L. provided input into the design of the experiments and the preparation of the manuscript.

Corresponding author

Correspondence to Xiaogang Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3438 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Deng, R., MacDonald, M. et al. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nature Mater 13, 157–162 (2014). https://doi.org/10.1038/nmat3804

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing