Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant frictional dissipation peaks and charge-density-wave slips at the NbSe2 surface

Abstract

Understanding nanoscale friction and dissipation is central to nanotechnology1,2,3,4. The recent detection of the electronic-friction drop caused by the onset of superconductivity in Nb (ref. 5) by means of an ultrasensitive non-contact pendulum atomic force microscope (AFM) raised hopes that a wider variety of mechanical-dissipation mechanisms become accessible. Here, we report a multiplet of AFM dissipation peaks arising a few nanometres above the surface of NbSe2—a layered compound exhibiting an incommensurate charge-density wave (CDW). Each peak appears at a well-defined tip–surface interaction force of the order of a nanonewton, and persists up to 70 K, where the short-range order of CDWs is known to disappear. Comparison of the measurements with a theoretical model suggests that the peaks are associated with local, tip-induced 2π phase slips of the CDW, and that dissipation maxima arise from hysteretic behaviour of the CDW phase as the tip oscillates at specific distances where sharp local slips occur.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observation of a charge-density wave on a NbSe2 surface and accompanied non-contact friction.
Figure 2: Energy dissipation versus tip–sample interaction force Fint.
Figure 3: Energy as a function of distance d for the elastic CDW model under the tip perturbation.

Similar content being viewed by others

References

  1. Urbakh, M. & Meyer, E. Nanotribology: The renaissance of friction. Nature Mater. 9, 8–10 (2010).

    Article  CAS  Google Scholar 

  2. Lantz, M. A., Wiesmann, D. & Gotsmann, B. Dynamic superlubricity and the elimination of wear on the nanoscale. Nature Nanotech. 4, 586–591 (2009).

    Article  CAS  Google Scholar 

  3. Socoliuc, A. et al. Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207–210 (2006).

    Article  CAS  Google Scholar 

  4. Vanossi, A., Manini, N., Urbakh, M., Zapperi, S. & Tosatti, E. Modeling friction: From nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013).

    Article  CAS  Google Scholar 

  5. Kisiel, M. et al. Suppression of electronic friction on Nb films in the superconducting state. Nature Mater. 10, 119–122 (2011).

    Article  CAS  Google Scholar 

  6. Volokitin, A. I., Persson, B. N. J. & Ueba, H. Giant enhancement of noncontact friction between closely spaced bodies by dielectric films and two-dimensional systems. J. Exp. Theor. Phys. 104, 96–110 (2007).

    Article  CAS  Google Scholar 

  7. Stipe, B. C., Mamin, H. J., Stowe, T. D., Kenny, T. W. & Rugar, D. Noncontact friction and force fluctuations between closely spaced bodies. Phys. Rev. Lett. 87, 096801 (2001).

    Article  CAS  Google Scholar 

  8. Kuehn, S., Loring, R. F. & Marohn, J. A. Dielectric fluctuations and the origins of noncontact friction. Phys. Rev. Lett. 96, 156103 (2006).

    Article  Google Scholar 

  9. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    Article  CAS  Google Scholar 

  10. Moncton, D. E., Axe, J. D. & DiSalvo, F. J. Study of superlattice formation in 2H-NbSe2 and 2H-TaSe2 by neutron scattering. Phys. Rev. Lett. 34, 734–737 (1975).

    Article  CAS  Google Scholar 

  11. Inosov, D. S. et al. Fermi surface nesting in several transition metal dichalcogenides. New J. Phys. 10, 125027 (2008).

    Article  Google Scholar 

  12. Shen, D. W. et al. Primary role of the barely occupied states in the charge density wave formation of NbSe2 . Phys. Rev. Lett. 101, 226406 (2008).

    Article  CAS  Google Scholar 

  13. Borisenko, S. V. et al. Two energy gaps and Fermi-surface arcs in NbSe2 . Phys. Rev. Lett. 102, 166402 (2009).

    Article  CAS  Google Scholar 

  14. Weber, F. et al. Extended phonon collapse and the origin of the charge-density wave in 2H- NbSe2 . Phys. Rev. Lett. 107, 107403 (2011).

    Article  CAS  Google Scholar 

  15. Chockalingam, S. P. et al. Visualizing the charge density wave transition in 2H-NbSe2 in real space. Preprint at http://arxiv.org/abs/1307.2282 [cond-mat.str-el] (2013).

  16. Guillamón, I. et al. Superconducting density of states and vortex cores of 2H- NbS2 . Phys. Rev. Lett. 101, 166407 (2008).

    Article  Google Scholar 

  17. Soumyanarayanan, A. et al. Quantum phase transition from triangular to stripe charge order in NbSe2 . Proc. Natl Acad. Sci. USA 110, 1623–1627 (2013).

    Article  CAS  Google Scholar 

  18. Cleveland, J. P., Anczykowski, B., Schmid, A. E. & Elings, V. B. Energy dissipation in tapping-mode atomic force microscopy. Appl. Phys. Lett. 72, 2613–2615 (1998).

    Article  CAS  Google Scholar 

  19. Sader, J. E. & Jarvis, S. P. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004).

    Article  CAS  Google Scholar 

  20. Saitoh, K., Hayashi, K., Shibayama, Y. & Shirahama, K. Gigantic maximum of nanoscale noncontact friction. Phys. Rev. Lett. 105, 236103 (2010).

    Article  Google Scholar 

  21. Fukuyama, H. & Lee, P. A. Dynamics of the charge-density wave. I. Impurity pinning in a single chain. Phys. Rev. B 17, 535–541 (1978).

    Article  CAS  Google Scholar 

  22. Lee, P. A. & Rice, T. M. Electric field depinning of charge density waves. Phys. Rev. B 19, 3970–3980 (1979).

    Article  CAS  Google Scholar 

  23. Tucker, J. R. Impurity pinning of sliding charge-density waves. Phys. Rev. B 40, 5447–5459 (1989).

    Article  CAS  Google Scholar 

  24. She, J-H. & Balatsky, A. V. Noncontact friction and relaxational dynamics of surface defects. Phys. Rev. Lett. 108, 136101 (2012).

    Article  Google Scholar 

  25. Li, L-J., Xu, Z-A., Shen, J-Q., Qiu, L-M. & Gan, Z-H. The effect of a charge-density wave transition on the transport properties of 2H-NbSe2 . J. Phys. Conden. Matter 17, 493–498 (2005).

    Article  CAS  Google Scholar 

  26. Kershaw, R., Vlasse, M. & Wold, Aaron The preparation of and electrical properties of niobium selenide and tungsten selenide. Inorg. Chem. 6, 1599–1602 (1967).

    Article  CAS  Google Scholar 

  27. Gysin, U., Rast, S., Kisiel, M., Werle, C. & Meyer, E. Low temperature ultrahigh vacuum noncontact atomic force microscope in the pendulum geometry. Rev. Sci. Instrum. 82, 023705 (2011).

    Article  CAS  Google Scholar 

  28. Rast, S. et al. Force microscopy experiments with ultrasensitive cantilevers. Nanotechnology 17, 189–194 (2006).

    Article  Google Scholar 

  29. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes: The Art of Scientific Computing 3rd edn (Cambridge Univ. Press, 2007).

    Google Scholar 

Download references

Acknowledgements

F.P., G.E.S. and E.T. acknowledge research support by MIUR, through PRIN— 2010LLKJBX_001, by SNSF, through SINERGIA Project CRSII2 136287/1, and by the EU-Japan Project LEMSUPER. E.T. acknowledges financial support from the ERC Advanced Research Grant No. 320796 MODPHYSFRICT. R.B. acknowledges financial support by the CNR program Short Term Mobility STM 2011. M.L., M.K., R.P., A.B. and E.M. acknowledge financial support from the Swiss National Science Foundation (NSF), the SINERGIA Project CRSII2 136287/1 and the Swiss National Center of Competence in Research on Nanoscale Science (NCCR-NANO). G.B. acknowledges financial support from EPSRC, UK(EP/I007210/1).

Author information

Authors and Affiliations

Authors

Contributions

The samples were fabricated by G.B. The idea was born out of discussion between E.T., E.M., R.B., A.G., R.P. and M.K. The experiment was carried out by M.L., M.K. and R.P. R.B. and A.G. participated in sample preparation and the pendulum-AFM experiment. The theoretical model was developed by F.P., G.E.S. and E.T. E.T., E.M., A.B., F.P., G.E.S., R.B., A.G., M.L., M.K. and R.P. were involved in interpretation, discussion and paper writing.

Corresponding author

Correspondence to Marcin Kisiel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 824 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langer, M., Kisiel, M., Pawlak, R. et al. Giant frictional dissipation peaks and charge-density-wave slips at the NbSe2 surface. Nature Mater 13, 173–177 (2014). https://doi.org/10.1038/nmat3836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing