Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Real-space imaging of interfacial water with submolecular resolution

A Corrigendum to this article was published on 25 January 2017

This article has been updated

Abstract

Water/solid interfaces are vital to our daily lives and are also a central theme across an incredibly wide range of scientific disciplines. Resolving the internal structure, that is, the O–H directionality, of water molecules adsorbed on solid surfaces has been one of the key issues of water science yet it remains challenging. Using a low-temperature scanning tunnelling microscope, we report submolecular-resolution imaging of individual water monomers and tetramers on NaCl(001) films supported by a Au(111) substrate at 5 K. The frontier molecular orbitals of adsorbed water were directly visualized, which allowed discrimination of the orientation of the monomers and the hydrogen-bond directionality of the tetramers in real space. Comparison with ab initio density functional theory calculations reveals that the ability to access the orbital structures of water stems from the electronic decoupling effect provided by the NaCl films and the precisely tunable tip–water coupling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Water monomers adsorbed on NaCl(001)/Au(111).
Figure 2: Development of the HOMO and LUMO states of a water monomer near the Fermi level due to tip–water coupling.
Figure 3: Orbital imaging of a water monomer with submolecular resolution.
Figure 4: Adsorption configuration and orbital imaging of water tetramers on NaCl(001)/Au(111).

Similar content being viewed by others

Change history

  • 21 December 2016

    In the version of this Article originally published, the title of ref. 1 was incorrect and should have read: 'The interaction of water with solid surfaces: fundamental aspects revisited'. This was corrected on 21 December 2016.

References

  1. Henderson, M. A. The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 46, 1–308 (2002).

    Article  CAS  Google Scholar 

  2. Hodgson, A. & Haq, S. Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 64, 381–451 (2009).

    Article  CAS  Google Scholar 

  3. Feibelman, P. J. Partial dissociation of water on Ru(0001). Science 295, 99–102 (2002).

    Article  CAS  Google Scholar 

  4. Meng, S., Xu, L. F., Wang, E. G. & Gao, S. Vibrational recognition of hydrogen-bonded water networks on a metal surface. Phys. Rev. Lett. 89, 176104 (2002).

    Article  Google Scholar 

  5. Carrasco, J., Hodgson, A. & Michaelides, A. A molecular perspective of water at metal interfaces. Nature Mater. 11, 667–674 (2012).

    Article  CAS  Google Scholar 

  6. Nagasaka, M., Kondoh, H., Amemiya, K., Ohta, T. & Iwasawa, Y. Proton transfer in a two-dimensional hydrogen-bonding network: Water and hydroxyl on a Pt(111) surface. Phys. Rev. Lett. 100, 106101 (2008).

    Article  CAS  Google Scholar 

  7. Kumagai, T., Okuyama, H., Hatta, S., Aruga, T. & Hamada, I. H-atom relay reactions in real space. Nature Mater. 11, 167–172 (2012).

    Article  CAS  Google Scholar 

  8. Shen, Y. R. & Ostroverkhov, V. Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem. Rev. 106, 1140–1154 (2006).

    Article  CAS  Google Scholar 

  9. Kimmel, G. A. et al. Polarization- and azimuth-resolved infrared spectroscopy of water on TiO2(110): Anisotropy and the hydrogen-bonding network. J. Phys. Chem. Lett. 3, 778–784 (2012).

    Article  CAS  Google Scholar 

  10. Repp, J., Meyer, G., Stojković, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: Scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    Article  Google Scholar 

  11. Mitsui, T., Rose, M. K., Fomin, E., Ogletree, D. F. & Salmeron, M. Water diffusion and clustering on Pd(111). Science 297, 1850–1852 (2002).

    Article  CAS  Google Scholar 

  12. Morgenstern, K. & Nieminen, J. Intermolecular bond length of ice on Ag(111). Phys. Rev. Lett. 88, 066102 (2002).

    Article  Google Scholar 

  13. Cerdá, J. et al. Novel water overlayer growth on Pd(111) characterized with scanning tunneling microscopy and density functional theory. Phys. Rev. Lett. 93, 116101 (2004).

    Article  Google Scholar 

  14. Verdaguer, A., Sacha, G. M., Bluhm, H. & Salmeron, M. Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 106, 1478–1510 (2006).

    Article  CAS  Google Scholar 

  15. Michaelides, A. & Morgenstern, K. Ice nanoclusters at hydrophobic metal surfaces. Nature Mater. 6, 597–601 (2007).

    Article  CAS  Google Scholar 

  16. Carrasco, J. et al. A one-dimensional ice structure built from pentagons. Nature Mater. 8, 427–431 (2009).

    Article  CAS  Google Scholar 

  17. He, Y., Tilocca, A., Dulub, O., Selloni, A. & Diebold, U. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nature Mater. 8, 585–589 (2009).

    Article  CAS  Google Scholar 

  18. Shin, H-J. et al. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nature Mater. 9, 442–447 (2010).

    Article  CAS  Google Scholar 

  19. Hammer, B., Wendt, S. & Besenbacher, F. Water adsorption on TiO2 . Top. Catal. 53, 423–430 (2010).

    Article  CAS  Google Scholar 

  20. Nie, S., Feibelman, P. J., Bartelt, N. C. & Thürmer, K. Pentagons and heptagons in the first water layer on Pt(111). Phys. Rev. Lett. 105, 026102 (2010).

    Article  CAS  Google Scholar 

  21. Okuyama, H. & Hamada, I. Hydrogen-bond imaging and engineering with a scanning tunnelling microscope. J. Phys. D 44, 464004 (2011).

    Article  Google Scholar 

  22. Allen, H. C., Laux, J. M., Vogt, R., Finlayson-Pitts, B. J. & Hemminger, J. C. Water-induced reorganization of ultrathin nitrate films on NaCl: Implications for the tropospheric chemistry of sea salt particles. J. Phys. Chem. 100, 6371 (1996).

    Article  CAS  Google Scholar 

  23. Taylor, D. P., Hess, W. P. & McCarthy, M. I. Structure and energetics of the water/NaCl(100) interface. J. Phys. Chem. B 101, 7455–7463 (1997).

    Article  CAS  Google Scholar 

  24. Liu, L. M., Laio, A. & Michaelides, A. Initial stages of salt crystal dissolution determined with ab initio molecular dynamics. Phys. Chem. Chem. Phys. 13, 13162–13166 (2011).

    Article  CAS  Google Scholar 

  25. Lauwaet, K. et al. Resolving all atoms of an alkali halide via nanomodulation of the thin NaCl film surface using the Au(111) reconstruction. Phys. Rev. B 85, 245440 (2012).

    Article  Google Scholar 

  26. Hebenstreit, W. et al. Atomic resolution by STM on ultra-thin films of alkali halides: Experiment and local density calculations. Surf. Sci. 424, L321–L328 (1999).

    Article  CAS  Google Scholar 

  27. Cabrera-Sanfelix, P., Arnau, A., Darling, G. R. & Sanchez-Portal, D. Water adsorption and diffusion on NaCl(100). J. Phys. Chem. B 110, 24559–24564 (2006).

    Article  CAS  Google Scholar 

  28. Yang, Y., Meng, S. & Wang, E. G. Water adsorption on a NaCl(001) surface: A density functional theory study. Phys. Rev. B 74, 245409 (2006).

    Article  Google Scholar 

  29. Ho, W. Single-molecule chemistry. J. Chem. Phys. 117, 11033–11061 (2002).

    Article  CAS  Google Scholar 

  30. Martı´nez, J. I., Abad, E., González, C., Flores, F. & Ortega, J. Improvement of scanning tunneling microscopy resolution with H-sensitized tips. Phys. Rev. Lett. 108, 246102 (2012).

    Article  Google Scholar 

  31. Nørskov, J. K. Chemisorption on metal surfaces. Rep. Prog. Phys. 53, 1253–1295 (1990).

    Article  Google Scholar 

  32. Perrin, M. L. et al. Large tunable image-charge effects in single-molecule junctions. Nature Nanotech. 8, 282–287 (2013).

    Article  CAS  Google Scholar 

  33. Sautet, P. & Joachim, C. Calculation of the benzene on rhodium STM images. Chem. Phys. Lett. 185, 23–30 (1991).

    Article  CAS  Google Scholar 

  34. Lawton, T. J., Carrasco, J., Baber, A. E., Michaelides, A. & Sykes, E. C. H. Visualization of hydrogen bonding and associated chirality in methanol hexamers. Phys. Rev. Lett. 107, 256101 (2011).

    Article  Google Scholar 

  35. Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    Article  CAS  Google Scholar 

  36. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

  37. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total- energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  40. Jonsson, H. et al. Classical and Quantum Dynamics in Condensed Phase Simulations Ch. 8 (World Scientific, 1998).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Programs of China under Grant No. 2012CB921303, the National Science Foundation of China under Grant Nos 11104004, 11290162, 11275008, 91321309 and 91021007, and the Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20110001120126. We thank W. Ji, S. Meng, S. W. Gao and W. Ho for enlightening discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.J. and E.W. designed and supervised the project. J.G., X.M. and Y.J. performed the STM measurements. J.C., X-Z.L. and E.W. carried out the DFT calculations. J.G., X.M., J.C., J.P., X-Z.L., L.X., E.W. and Y.J. analysed the data. J.S. contributed to the STM programming. J-R.S. contributed to the interpretation of the data. Y.J. wrote the manuscript with J.G., X.M., J.C., J.P., X-Z.L. L.X. and E.W. The manuscript reflects the contributions of all authors.

Corresponding authors

Correspondence to Enge Wang or Ying Jiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1218 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Meng, X., Chen, J. et al. Real-space imaging of interfacial water with submolecular resolution. Nature Mater 13, 184–189 (2014). https://doi.org/10.1038/nmat3848

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3848

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing