Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO3

Abstract

Two-dimensional electron gases (2DEGs) forming at the interfaces of transition metal oxides1,2,3 exhibit a range of properties, including tunable insulator–superconductor–metal transitions4,5,6, large magnetoresistance7, coexisting ferromagnetism and superconductivity8,9, and a spin splitting of a few meV (refs 10, 11). Strontium titanate (SrTiO3), the cornerstone of such oxide-based electronics, is a transparent, non-magnetic, wide-bandgap insulator in the bulk, and has recently been found to host a surface 2DEG (refs 12, 13, 14, 15). The most strongly confined carriers within this 2DEG comprise two subbands, separated by an energy gap of 90 meV and forming concentric circular Fermi surfaces12,13,15. Using spin- and angle-resolved photoemission spectroscopy (SARPES), we show that the electron spins in these subbands have opposite chiralities. Although the Rashba effect might be expected to give rise to such spin textures, the giant splitting of almost 100 meV at the Fermi level is far larger than anticipated16,17. Moreover, in contrast to a simple Rashba system, the spin-polarized subbands are non-degenerate at the Brillouin zone centre. This degeneracy can be lifted by time-reversal symmetry breaking, implying the possible existence of magnetic order. These results show that confined electronic states at oxide surfaces can be endowed with novel, non-trivial properties that are both theoretically challenging to anticipate and promising for technological applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin-polarized subbands of the 2DEG at the surface of SrTiO3.
Figure 2: Spin components at different subband binding energies.
Figure 3: Summary of spin splittings and spin vectors of the light subbands at the surface of SrTiO3.

Similar content being viewed by others

References

  1. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  2. Okamoto, S. & Millis, A. J. Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature 428, 630–633 (2004).

    Article  CAS  Google Scholar 

  3. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nature Mater. 11, 103–113 (2012).

    Article  CAS  Google Scholar 

  4. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

    Article  CAS  Google Scholar 

  5. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    Article  CAS  Google Scholar 

  6. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nature Mater. 7, 855–858 (2008).

    Article  CAS  Google Scholar 

  7. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater. 6, 493–496 (2007).

    Article  CAS  Google Scholar 

  8. Li, L., Richter, C., Mannhart, J. & Ashoori, R. C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nature Phys. 7, 762–766 (2011).

    CAS  Google Scholar 

  9. Bert, J. A. et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nature Phys. 7, 767–771 (2011).

    Article  CAS  Google Scholar 

  10. Caviglia, A. D. et al. Tunable Rashba spin–orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).

    Article  CAS  Google Scholar 

  11. Ben Shalom, M., Ron, A., Palevski, A. & Dagan, Y. Shubnikov-De Haas oscillations in SrTiO3/LaAlO3 interfaces. Phys. Rev. Lett. 105, 206401 (2010).

    Article  CAS  Google Scholar 

  12. Santander-Syro, A. F. et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO3 . Nature 469, 189–193 (2011).

    Article  CAS  Google Scholar 

  13. Meevasana, W. et al. Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. Nature Mater. 10, 114–118 (2011).

    Article  CAS  Google Scholar 

  14. Santander-Syro, A. F. et al. Orbital symmetry reconstruction and strong mass renormalization in the two-dimensional electron gas at the surface of KTaO3 . Phys. Rev. B 86, 121107 (2012).

    Article  Google Scholar 

  15. Plumb, N. C. et al. Mixed dimensionality of confined conducting electrons in the surface region of SrTiO3 . Phys. Rev. Lett. 113, 086801 (2014).

    Article  CAS  Google Scholar 

  16. Khalsa, G., Lee, B. & MacDonald, A. H. Theory of t2g electron-gas Rashba interactions. Phys. Rev. B 88, 041302(R) (2013).

    Article  Google Scholar 

  17. Zhong, Z., Zhang, Q. & Held, K. Quantum confinement in perovskite oxide heterostructures: Tight binding instead of a nearly free electron picture. Phys. Rev. B 88, 125401 (2013).

    Article  Google Scholar 

  18. Winkler, R. Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, 2003).

    Book  Google Scholar 

  19. Meier, F., Dil, J. H. & Osterwalder, J. Measuring spin polarization vectors in angle-resolved photoemission spectroscopy. New J. Phys. 11, 125008 (2009).

    Article  Google Scholar 

  20. Heinzmann, U. & Dil, J. H. Spin–orbit-induced photoelectron spin polarization in angle-resolved photoemission from both atomic and condensed matter targets. J. Phys. Condens. Matter 24, 173001 (2012).

    Article  Google Scholar 

  21. Potter, A. C. & Lee, P. A. Multichannel generalization of Kitaev’s Majorana end states and a practical route to realize them in thin-films. Phys. Rev. Lett. 105, 227003 (2010).

    Article  Google Scholar 

  22. Xu, S-Y. et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nature Phys. 8, 616–622 (2012).

    Article  CAS  Google Scholar 

  23. Dil, J. H. Spin and angle resolved photoemission on non-magnetic low-dimensional systems. J. Phys. Condens. Matter 21, 403001 (2009).

    Article  Google Scholar 

  24. Gierz, I. et al. Structural influence on the Rashba-type spin splitting in surface alloys. Phys. Rev. B 81, 245430 (2010).

    Article  Google Scholar 

  25. Bihlmayer, G., Koroteev, Y. M., Echenique, P. M., Chulkov, E. V. & Blügel, S. The Rashba effect at metallic surfaces. Surf. Sci. 600, 3888–3891 (2006).

    Article  CAS  Google Scholar 

  26. Nagano, M., Kodama, A., Shishidou, T. & Oguchi, T. A first-principles study on the Rashba effect in surface systems. J. Phys. Condens. Matter 21, 064239 (2009).

    Article  Google Scholar 

  27. Lee, J-S. et al. Titanium d xy ferromagnetism at the LaAlO3/SrTiO3 interface. Nature Mater. 12, 703–706 (2013).

    Article  CAS  Google Scholar 

  28. Salluzzo, M. et al. Origin of interface magnetism in BiMnO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures. Phys. Rev. Lett. 111, 087204 (2013).

    Article  CAS  Google Scholar 

  29. Pavlenko, N., Kopp, T., Tsymbal, E. Y., Mannhart, J. & Sawatzky, G. A. Oxygen vacancies at titanate interfaces: Two-dimensional magnetism and orbital reconstruction. Phys. Rev. B 86, 064431 (2012).

    Article  Google Scholar 

  30. Pavlenko, N., Kopp, T., Tsymbal, E. Y., Sawatzky, G. A. & Mannhart, J. Magnetic and superconducting phases at the LaAlO3/SrTiO3 interface: The role of interfacial Ti 3d electrons. Phys. Rev. B 85, 020407(R) (2012).

    Article  Google Scholar 

  31. Michaeli, K., Potter, A. C. & Lee, P. A. Superconducting and ferromagnetic phases in SrTiO3/LaAlO3 oxide interface structures: Possibility of finite momentum pairing. Phys. Rev. Lett. 108, 117003 (2012).

    Article  Google Scholar 

  32. Banerjee, S., Erten, O. & Randeria, M. Ferromagnetic exchange, spin–orbit coupling and spiral magnetism at the LaAlO3/SrTiO3 interface. Nature Phys. 9, 626–630 (2013).

    Article  CAS  Google Scholar 

  33. Okamoto, S., Millis, A. J. & Spaldin, N. A. Lattice relaxation in oxide heterostructures: LaTiO3/SrTiO3 superlattices. Phys. Rev. Lett. 97, 056802 (2006).

    Article  Google Scholar 

  34. Pentcheva, R. & Pickett, W. E. Ionic relaxation contribution to the electronic reconstruction at the n-type LaAlO3/SrTiO3 interface. Phys. Rev. B 78, 205106 (2008).

    Article  Google Scholar 

  35. Garrison, K., Chang, Y. & Johnson, P. D. Spin polarization of quantum well states in copper thin films deposited on a Co(001) substrate. Phys. Rev. Lett. 71, 2801–2804 (1993).

    Article  CAS  Google Scholar 

  36. Carbone, C., Vescovo, E., Rader, O., Gudat, W. & Eberhardt, W. Exchange split quantum well states of a noble metal film on a magnetic substrate. Phys. Rev. Lett. 71, 2805–2808 (1993).

    Article  CAS  Google Scholar 

  37. Bickel, N., Schmidt, G., Heinz, K. & Müller, K. Ferroelectric relaxation of the SrTiO3(100) surface. Phys. Rev. Lett. 62, 2009–2011 (1989).

    Article  CAS  Google Scholar 

  38. Schooley, J. F., Hosler, W. R. & Cohen, M. L. Superconductivity in semiconducting SrTiO3 . Phys. Rev. Lett. 12, 474–475 (1964).

    Article  CAS  Google Scholar 

  39. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  CAS  Google Scholar 

  40. Hoesch, M. et al. Spin-polarized Fermi surface mapping. J. Electron Spectrosc. Relat. Phenom. 124, 263–279 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Gabay, M. Rozenberg, N. Reyren, R. Claessen, S. Ming, L. Patthey and J. Mesot for discussions. Experiments were conducted at the Surface/Interface Spectroscopy (SIS) beamline of the Swiss Light Source within the Paul Scherrer Institut in Villigen, Switzerland. The COPHEE end-station is supported by the Swiss National Science Foundation. Work at the CSNSM is supported by public grants from the French National Research Agency (ANR) (project LACUNES No ANR-13-BS04-0006-01) and the ‘Laboratoire d’Excellence Physique Atomes Lumière Matière’ (LabEx PALM project ELECTROX) overseen by the ANR as part of the ‘Investissements d’Avenir’ program (reference: ANR-10-LABX-0039). T.C.R. is supported by the RTRA–Triangle de la Physique (project PEGASOS). J.H.D. acknowledges support from the Swiss National Science Foundation. A.F.S-S. acknowledges support from the Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Contributions

Project conception: A.F.S-S., F.F., J.H.D. and M.R.; measurements: A.F.S-S., F.F., C.B., T.C.R., G.L., N.C.P., J.H.D. and M.R.; infrastructure for SARPES experiments at SLS: G.L. and J.H.D.; sample characterizations: N.C.P. and M.R.; data analysis: A.F.S-S., F.F. and J.H.D.; writing of the manuscript: A.F.S-S., F.F. and J.H.D. All authors extensively discussed the results and the manuscript.

Corresponding authors

Correspondence to A. F. Santander-Syro, J. H. Dil or M. Radović.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santander-Syro, A., Fortuna, F., Bareille, C. et al. Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO3. Nature Mater 13, 1085–1090 (2014). https://doi.org/10.1038/nmat4107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing